From 1 - 3 / 3
  • <div>The Severe Wind Hazard Assessment for Queensland arose as a project to better understand the potential impacts of tropical cyclones (TCs) on population centres and elements of critical infrastructure in Queensland. The rationale for the project was reinforced by lessons from Severe Tropical Cyclone (STC) Debbie, the direct and indirect impacts of which affected a significant area of Queensland, stretching from Bowen to the City of Gold Coast and Northern New South Wales between 28 March and 7 April 2017, resulting in 14 mostly flood associated deaths, and more than A$3.5 billion in direct losses. The intent of the project is to explore and assess a range of scenarios that extend beyond the contemporary recollection of severe events in order to challenge decision making for rarer but higher-consequence events. The scenarios described in the report can be used to improve planning for severe tropical cyclone (TC) events and their impacts. This includes developing a better understanding of how the capabilities of emergency services and supporting elements may be impacted in actual events.&nbsp;</div><div><br></div><div>Scenarios were selected from the catalogue of synthetic events (i.e. events that did not actually occur but whose occurrence was as probable as those that did occur) generated for the 2018 Tropical Cyclone Hazard Assessment (TCHA; Arthur, 2018), in consultation with Queensland Fire and Emergency Services (QFES) and those local governments involved within the project. Two TC events were modelled for each location for this project – a Category 3 and a Category 5 TC -with ‘favourable’ tracks for impact analysis. In all scenarios, consideration was given to regional historical analogues for the selected synthetic tracks to better relate the scenario outputs to known or “lived” events. These categories were chosen as they represent events with a moderate and very low likelihood with respect to intensity, based on historical observations. This also accounts for the future climate of less TCs but more intense occurrences, highlighting the different impacts arising from different events. It is important to emphasise and understand that each individual TC event will be different and lead to different impacts.&nbsp;</div><div><br></div>

  • Indonesia is one of the most disaster prone countries in the world. For 10 years the Australian and Indonesian governments, science agencies and universities, have partnered to strengthen disaster management in Indonesia. Working together on science, technology and policy has greatly improved decision making around disaster management in Indonesia. By helping people prepare for, respond to, and recover from disasters, more lives can be saved, impacts on the most vulnerable members of society reduced, and infrastructure can be protected. Our partnership has concentrated on strengthening the evidence base for formed disaster management by improving: 1) hazard information for earthquake, tsunami, volcano and flood 2) spatial data for exposure (population, building, roads and infrastructure) 3) decision support tool (InaSAFE) to inform disaster response and management decisions. This document outlines the highlights of the Indonesian-Australian collaboration on the use of science and technology in disaster management.

  • <div>Ask a Queenslander where tropical cyclones (TCs) occur, and the inevitable response will be North Queensland. Whilst most of the tropical cyclones have made landfall north of Bundaberg, the cascading and concurrent effects are felt much further afield. The major flooding following TC Yasi in 2011 and TC Debbie in 2017, are just two examples where impacts were felt across the State, and of course, the wind impacts to the banana plantation following TC Larry (2006) was felt nationally.&nbsp;</div><div> &nbsp;</div><div>South East Queensland has not been forgotten when it comes to tropical cyclone impact with an event crossing Coolangatta in 1954. There was also the more recent TC Gabrielle which tracked offshore on its path southwards to New Zealand.&nbsp;&nbsp;</div><div>&nbsp;</div><div>Acknowledging that climate is influencing the intensity and frequency of more intense severe weather hazards, understanding how tropical cyclone hazard varies under future climate conditions is critical to risk-based planning in Queensland. With this climate influence, along with increasing population and more vulnerable building design in South East Queensland (relative to northern Queensland), there is an urgent need to assess the wind risk and set in place plans to reduce the impacts of a potential tropical cyclone impact in South East Queensland. <b>Citation:</b> Sexton, J., Tait, M., Turner, H., Arthur, C., Henderson, D., Edwards, M; Preparing for the expected: tropical cyclones in South East Queensland.<i> AJEM</i> 38:4, October 2023, pages 33-39.