Satellite imagery
Type of resources
Keywords
Publication year
Distribution Formats
Scale
Topics
-
This is the parent datafile of a dataset that comprises a set of 14+ geoscience products made up of mosaiced ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) scenes across Australia. The individual geoscience products are a combination of bands and band ratios to highlight different mineral groups and parameters including: False colour composite CSIRO Landsat TM Regolith Ratios Green vegetation content Ferric oxide content Ferric oxide composition Ferrous iron index Opaque index AlOH group content AlOH group composition Kaolin group index FeOH group content MgOH group content MgOH group composition Ferrous iron content in MgOH/carbonate Surface mineral group distribution (relative abundance and composition)
-
A `weighted geometric median’ approach has been used to estimate the median surface reflectance of the barest state (i.e., least vegetation) observed through Landsat-8 OLI observations from 2013 to September 2018 to generate a six-band Landsat-8 Barest Earth pixel composite mosaic over the Australian continent. The bands include BLUE (0.452 - 0.512), GREEN (0.533 - 0.590), RED, (0.636 - 0.673) NIR (0.851 - 0.879), SWIR1 (1.566 - 1.651) and SWIR2 (2.107 - 2.294) wavelength regions. The weighted median approach is robust to outliers (such as cloud, shadows, saturation, corrupted pixels) and also maintains the relationship between all the spectral wavelengths in the spectra observed through time. The product reduces the influence of vegetation and allows for more direct mapping of soil and rock mineralogy. Reference: Dale Roberts, John Wilford, and Omar Ghattas (2018). Revealing the Australian Continent at its Barest, submitted.
-
<b>This record was retired 29/03/2022 with approval from S.Oliver as it has been superseded by eCat 145498 Geoscience Australia Landsat Fractional Cover Collection 3</b> The Fractional Cover (FC) algorithm was developed by the Joint Remote Sensing Research Program and is described in described in Scarth et al. (2010). It has been implemented by Geoscience Australia for every observation from Landsat Thematic Mapper (Landsat 5), Enhanced Thematic Mapper (Landsat 7) and Operational Land Imager (Landsat 8) acquired since 1987. It is calculated from surface reflectance (SR-N_25_2.0.0). FC_25 provides a 25m scale fractional cover representation of the proportions of green or photosynthetic vegetation, non-photosynthetic vegetation, and bare surface cover across the Australian continent. The fractions are retrieved by inverting multiple linear regression estimates and using synthetic endmembers in a constrained non-negative least squares unmixing model. For further information please see the articles below describing the method implemented which are free to read: - Scarth, P, Roder, A and Schmidt, M 2010, 'Tracking grazing pressure and climate interaction - the role of Landsat fractional cover in time series analysis', Proceedings of the 15th Australasian Remote Sensing and Photogrammetry Conference, Schmidt, M, Denham, R and Scarth, P 2010, 'Fractional ground cover monitoring of pastures and agricultural areas in Queensland', Proceedings of the 15th Australasian Remote Sensing and Photogrammetry Conference A summary of the algorithm developed by the Joint Remote Sensing Centre is also available from the AusCover website: http://data.auscover.org.au/xwiki/bin/view/Product+pages/Landsat+Fractional+Cover Fractional cover data can be used to identify large scale patterns and trends and inform evidence based decision making and policy on topics including wind and water erosion risk, soil carbon dynamics, land management practices and rangeland condition. This information could enable policy agencies, natural and agricultural land resource managers, and scientists to monitor land conditions over large areas over long time frames.
-
1. Band ratio: B7/B8 Blue-cyan is magnesite-dolomite, amphibole, chlorite Red is calcite, epidote, amphibole useful for mapping: (1) exposed parent material persisting through "cover"; (2) "dolomitization" alteration in carbonates - combine with Ferrous iron in MgOH product to help separate dolomite versus ankerite; (3) lithology-cutting hydrothermal (e.g. propyllitic) alteration - combine with FeOH content product and ferrous iron in Mg-OH to isolate chlorite from actinolite versus talc versus epidote; and (4) layering within mafic/ultramafic intrusives. useful for mapping: (1) exposed parent material persisting through "cover"; (2) "dolomitization" alteration in carbonates - combine with Ferrous iron in MgOH product to help separate dolomite versus ankerite; (3) lithology-cutting hydrothermal (e.g. propyllitic) alteration - combine with FeOH content product and ferrous iron in Mg-OH to isolate chlorite from actinolite versus talc versus epidote; and (4) layering within mafic/ultramafic intrusives. useful for mapping: (1) exposed parent material persisting through "cover"; (2) "dolomitization" alteration in carbonates - combine with Ferrous iron in MgOH product to help separate dolomite versus ankerite; (3) lithology-cutting hydrothermal (e.g. propyllitic) alteration - combine with FeOH content product and ferrous iron in Mg-OH to isolate chlorite from actinolite versus talc versus epidote; and (4) layering within mafic/ultramafic intrusives.
-
Remotely sensed datasets provide fundamental information for understanding the chemical, physical and temporal dynamics of the atmosphere, lithosphere, biosphere and hydrosphere. Satellite remote sensing has been used extensively in mapping the nature and characteristics of the terrestrial land surface, including vegetation, rock, soil and landforms, across global to local-district scales. With the exception of hyper-arid regions, mapping rock and soil from space has been problematic because of vegetation that either masks the underlying substrate or confuses the spectral signatures of geological materials (i.e. diagnostic mineral spectral features), making them difficult to resolve. As part of the Exploring for the Future program, a new barest earth Landsat mosaic of the Australian continent using time-series analysis significantly reduces the influence of vegetation and enhances mapping of soil and exposed rock from space. Here, we provide a brief background on geological remote sensing and describe a suite of enhanced images using the barest earth Landsat mosaic for mapping surface mineralogy and geochemistry. These geological enhanced images provide improved inputs for predictive modelling of soil and rock properties over the Australian continent. In one case study, use of these products instead of existing Landsat TM band data to model chromium and sodium distribution using a random forest machine learning algorithm improved model performance by 28–46%. <b>Citation:</b> Wilford, J. and Roberts, D., 2020. Enhanced barest earth Landsat imagery for soil and lithological modelling. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
1. Band ratio: B5/B7 Blue is well ordered kaolinite, Al-rich muscovite/illite, paragonite, pyrophyllite Red is Al-poor (Si-rich) muscovite (phengite) useful for mapping: (1) exposed saprolite/saprock is often white mica or Al-smectite (warmer colours) whereas transported materials are often kaolin-rich (cooler colours); (2) clays developed over carbonates, especially Al-smectite (montmorillonite, beidellite) will produce middle to warmers colours. (2) stratigraphic mapping based on different clay-types; and (3) lithology-overprinting hydrothermal alteration, e.g. Si-rich and K-rich phengitic mica (warmer colours). Combine with Ferrous iron in MgOH and FeOH content products to look for evidence of overlapping/juxtaposed potassic metasomatism in ferromagnesian parents rocks (e.g. Archaean greenstone associated Au mineralisation) +/- associated distal propyllitic alteration (e.g. chlorite, amphibole).
-
1. Band ratio: (B6+B8)/B7 Blue is low content, Red is high content (potentially includes: chlorite, epidote, jarosite, nontronite, gibbsite, gypsum, opal-chalcedony) Useful for mapping: (1) jarosite (acid conditions) - in combination with ferric oxide content (high); (2) gypsum/gibbsite - in combination with ferric oxide content (low); (3) magnesite - in combination with ferric oxide content (low) and MgOH content (moderate-high) (4) chlorite (e.g. propyllitic alteration) - in combination with Ferrous in MgOH (high); and (5) epidote (calc-silicate alteration) - in combination with Ferrous in MgOH (low).
-
<b>Please Note:</b> The data related to this Abstract can be obtained by contacting <a href = "mailto: clientservices@ga.gov.au">Manager Client Services</a> and quoting Catalogue number 144231. The data are arranged by regions, so please download the Data Description document found in the Downloads tab to determine your area of interest. Remotely sensed datasets provide fundamental information for understanding the chemical, physical and temporal dynamics of the atmosphere, lithosphere, biosphere and hydrosphere. Satellite remote sensing has been used extensively in mapping the nature and characteristics of the terrestrial land surface, including vegetation, rock, soil and landforms, across global to local-district scales. With the exception of hyper-arid regions, mapping rock and soil from space has been problematic because of vegetation that either masks the underlying substrate or confuses the spectral signatures of geological materials (i.e. diagnostic mineral spectral features), making them difficult to resolve. As part of the Exploring for the Future program, a new barest earth Landsat mosaic of the Australian continent using time-series analysis significantly reduces the influence of vegetation and enhances mapping of soil and exposed rock from space. Here, we provide a brief background on geological remote sensing and describe a suite of enhanced images using the barest earth Landsat mosaic for mapping surface mineralogy and geochemistry. These geological enhanced images provide improved inputs for predictive modelling of soil and rock properties over the Australian continent. In one case study, use of these products instead of existing Landsat TM band data to model chromium and sodium distribution using a random forest machine learning algorithm improved model performance by 28–46%.
-
1. 3 band RGB composite Red: B3/B2 Green: B3/B7 Blue: B4/B7 (white = green vegetation) Use this image to help interpret (1) the amount of green vegetation cover (appears as white); (2) basic spectral separation (colour) between different regolith and geological units and regions/provinces; and (3) evidence for unmasked cloud (appears as green).
-
A Multi-scale topographic position image of Australia has been generated by combining a topographic position index and topographic ruggedness. Topographic Position Index (TPI) measures the topographic slope position of landforms. Ruggedness informs on the roughness of the surface and is calculated as the standard deviation of elevations. Both these terrain attributes are therefore scale dependent and will vary according to the size of the analysis window. Based on an algorithm developed by Lindsay et al. (2015) we have generated multi-scale topographic position model over the Australian continent using 3 second resolution (~90m) DEM derived from the Shuttle Radar Topography Mission (SRTM). The algorithm calculates topographic position scaled by the corresponding ruggedness across three spatial scales (window sizes) of 0.2-8.1 Km; 8.2-65.2 Km and 65.6-147.6 Km. The derived ternary image captures variations in topographic position across these spatial scales (blue local, green intermediate and red regional) and gives a rich representation of nested landform features that have broad application in understanding geomorphological and hydrological processes and in mapping regolith and soils over the Australian continent. Lindsay, J, B., Cockburn, J.M.H. and Russell, H.A.J. 2015. An integral image approach to performing multi-scale topographic position analysis, Geomorphology 245, 51–61.