CO2 capture
Type of resources
Keywords
Publication year
Scale
Topics
-
Currently there is no uniform methodology to estimate geological CO2 storage capacity. Each country or organization uses its own evaluation and estimation method. During 2011-2012, the International Energy Agency has convened a process among national geological survey organizations to recommend a common estimation method for countries to use. Such a method should describe a typical process for developing assessments of CO2 storage resources; recommend a sound methodology for arriving at a jurisdictional or national-scale CO2 storage resource assessment that could be applied globally; and recommend a way forward to bridge the gap between such a resource and a policy-makers aspiration to understand what proportion of the resource can be relied on and is likely to be technically accessible at any particular cost. This report will outline a 'roadmap' to address these recommendations in a way that jurisdictions can use extant methodologies or craft their own to assess their CO2 storage endowment in a manner consistent with other jurisdictions. In this way they may be able to fully utilize their endowment as well as make a contribution to the potential realization of a worldwide estimate of storage resource.
-
The survey was undertaken as a collaboration between Geoscience Australia and the Australian Institute of Marine Science (AIMS). The purpose was to acquire geophysical and biophysical data on shallow (less than 100 m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. Sub bottom profiler data were acquired using a sparker source and a 24 channel streamer, and processed as shallow, high resolution, multi-channel seismic reflection data.
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012, as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This data-set comprises inorganic element data from surface seabed sediments (~0-2 cm) in the Timor Sea.
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This 10 sample dataset comprises chlorophll abc measurments from surface sediments (0-2 cm) in the Timor Sea.
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset comprises TCO2 pools (0-2cm) and fluxes calculated from bottle incubation experiments (24 hours).
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset comprise TOC, TN and carbon and nitrogen isotope data from surface sediments (0-2cm) in the Timor Sea.
-
The Petrel Sub-basin Marine Survey GA-0335 (SOL5463) was acquired by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. The survey mapped two targeted areas of the Petrel-Sub-basin located within the Ptrl-01 2009 Greenhouse Gas acreage release area (now closed). Data acquired onboard the AIMS research vessel, Solander included multibeam sonar bathymetry (471.2 km2 in Area 1 and 181.1 km2 in Area 2) to enable geomorphic mapping, and multi-channel sub-bottom profiles (558 line-kilometres in Area 1 and 97 line-kilometres in Area 2) to investigate possible fluid pathways in the shallow subsurface geology. Sampling sites covering a range of seabed features were identified from the preliminary analysis of multibeam bathymetry and shallow seismic reflection data. Sampling equipment deployed during the survey included surface sediment grabs, vibrocores, towed underwater video, conductivity-temperature-depth (CTD) profilers and ocean moorings. A total of 14 stations were examined in Area 1 (the priority study area) and one station in Area 2. This report provides a comprehensive overview of the survey activities and preliminary results from survey SOL5463. Detailed analyses and interpretation of the data acquired during the survey will be integrated with new and existing seismic data. This new information will support the regional assessment of CO2 storage prospectivity in the Petrel Sub-basin and contribute to the nation's knowledge of its marine environmental assets.
-
The geological storage of carbon dioxide (CO2) is the process whereby CO2 captured from power plants or other industrial facilities is transported by pipeline to a suitable location and then injected under pressure into a deep geological reservoir formation, where it remains permanently trapped and prevented from entering the atmosphere. The processes by which it is retained in the subsurface are generally those that have trapped oil, gas and naturally generated CO2 for millions of years. The geological formations that can be utilised for this trapping have the same characteristics as those that are able to act as reservoir rocks for petroleum. They have good porosity and permeability and have an overlying sealing formation, which will prevent the trapped fluids migrating out of the storage reservoir and possibly escaping to the surface. In addition, because of the phase behaviour of CO2, efficient storage requires that they are stored at depths greater than 800 below the surface. Unlike oil and gas, which rely primarily on a three dimensional structural trap to prevent them from ultimately rising to the surface, there are additional trapping mechanisms for CO2. Given a sufficiently long migration path within a formation, CO2 will ultimately be rendered immobile by dissolution into the formation water, residual trapping and potentially, over longer time scales, mineralisation. As groundwaters at these depths are generally saline, this type of storage is often termed deep saline aquifer storage. A recent nationwide review by Commonwealth and State geological surveys, as part of the Carbon Storage Taskforce, rated the suitability of geological basins across Australia for geological storage of CO2. The most geologically suitable basins are the offshore Gippsland and North Perth basins but several onshore basins also rate highly. These include the Eromanga, Cooper, Bowen, Galilee, Surat, Canning and Otway basins. The Victorian Government has recently released area for greenhouse gas storage exploration in the Gippsland Basin and the Queensland Government in the Galilee and Surat basins. The aquifers within these basins provide groundwater for human consumption, agriculture, mining, recreation and groundwater dependent ecosystems. The Surat Basin also contains oil and gas accumulations that are being exploited by the onshore petroleum industry. Understanding the existing the groundwater's chemistry and the connectivity between aquifers in the context of its current use is essential in order to determine whether prospective aquifers could be used for geological storage of CO2 without compromising other activities. The potential risks to groundwater from the potential migration of CO2 and changes to groundwater properties that might be expected will also be discussed. Current data gaps include poor hydrogeochemical data coverage for the deeper aquifers and particularly limited data on trace metals and organics. A comparison with experiences learned from enhanced oil recovery using CO2 in North America and the CO2CRC's pilot CO2 injection project in Western Victoria will illustrate some of the unique differences and opportunities for geological storage of CO2 in Australia. Oral presentation at "Groundwater 2010" conference, 31 October - 4th November 2010, Canberra
-
This is a collection of conference program and abstracts presented at AOGC 2010, Canberra.
-
Geoscience Australia is conducting a study under the National Carbon Infrastructure Plan (NCIP) to assess the suitability of the Vlaming Sub-basin for CO2 storage. It involves characterisation of the Valanginian reservoir (Gage Sandstone) and the Early Cretaceous seal (South Perth Shale) by integrating seismic interpretation and well log analysis in a detailed sequence stratigraphic investigation. The Gage Sandstone, comprised of channelised turbidites and mass flows, was the first unit deposited after breakup between India and Australia. Deposited during a sea level lowstand in the palaeo-topographic lows of the breakup unconformity, it is overlain by a thick deltaic to shallow marine succession of the South Perth Shale. The Gage Sandstone is considered one of the best reservoirs in the sub-basin with porosities of 23-30% and permeabilities of 200-1800 mD. It occurs at depths between 1000 and 3000 m below the seafloor, which makes, it an attractive target for the injection and long-term storage of supercritical CO2. The new extent of the Gage Sandstone, based on seismic interpretation and well log correlation, shows that in some of the wells the sandstone unit overlying the Valanginian unconformity belongs to the South Perth Shale and not to the Gage Sandstone. The G. Mutabilis palynological zone used in the past for identifying Gage Sandstone interval appears to be facies controlled and time transgressive. Detailed analysis of the reservoir properties at the wells in conjunction with systematic seismic facies mapping will serve as a basis for a regional reservoir model and storage potential estimation of the Gage Sandstone reservoir.