From 1 - 10 / 23
  • The 2018 Tropical Cyclone Hazard Assessment (TCHA18) provides an evaluation of the likelihood and intensity (“how big and how often”) of the occurrence of tropical cyclone (TC) winds across the Australian region, covering mainland Australia, islands and adjacent waters. It is a probabilistic evaluation of the expected maximum gust wind speeds generated by TCs, with a range of average recurrence intervals (ARIs) or conversely, average exceedance probabilities (AEPs). The TCHA18 provides hazard profiles (ARI versus wind speed) for over 400 locations in Australia and neighbouring regions, and a catalogue of synthetic TC events that can be used for scenario exercises. The TCHA18 also establishes a baseline for the understanding of TC hazard in the current climate against which projections of future TC wind hazard can be compared. We will demonstrate data access methods and applications of the TCHA18 for a range of users. A key component of the TCHA18 is the synthetic event catalogue that contains details of all events that informed the probabilistic assessment. The event catalogue can be interrogated by users to find TC events for more detailed modelling, leading to impact assessment studies. Presented at the Australian Meteorological and Oceanographic Society Annual Meeting and the International Conference on Tropical Meteorology and Oceanography (AMOS-ICTMO 2019) Conference

  • This wind field was produced within v2.0 of TCRM, using data from the Bureau of Meteorology to constrain the wind field. Wind multipliers were calculated using a landcover dataset derived from Landsat and Digital Earth Australia. This wind field may be refined in the future as new data becomes available. This record includes - the track data from the Bureau of Meteorology used to model Tropical Cyclone Debbie - the landcover dataset produced for the Airlie Beach region - the preliminary local wind field

  • Tropical Cyclone (TC) Debbie made landfall near Airlie Beach, Queensland on the 28th March 2017 as a category four system. After TC Debbie had dissipated, survey teams from James Cook University (JCU) and Geoscience Australia conducted post-disaster damage surveys to assess the extent of damage caused by the storm. Observations of wind speeds during TC Debbie were recorded at a number of Bureau of Meteorology automatic weather stations, as well as six mobile anemometers deployed by JCU prior to landfall. While these stations provide valuable measurements of wind speed at their locations, an estimate of the winds throughout the landscape is required to assign maximum wind speeds to the observed level of damage at each surveyed location. This relationship will be used to develop vulnerability curves for building stock in the affected region. These curves can assist emergency managers prepare for and respond to future severe wind events, through developing an understanding of the vulnerability of local building stock to severe wind events. We use the following workflow to develop a corrected, local wind field for TC Debbie: 1. Model the maximum wind gust over the lifetime of TC Debbie across the landfall region using the Tropical Cyclone Risk Model (TCRM); 2. Apply a correction for local wind factors, including topography, land cover, shielding and wind direction; 3. Validate the local wind field against observations; 4. Apply a correction based on the difference between the observed and modelled wind fields. The final wind field is a product of the modelled wind field, local and observational corrections to produce the best estimate of the spatial distribution of the maximum wind gust throughout the lifetime of TC Debbie. Poster presented at the 2018 Amos-ICSHMO Conference Sydney, NSW (https://www.ametsoc.org/index.cfm/ams/meetings-events/ams-meetings/amos-icshmo-2018/)

  • In March 1999, TC Vance swept through Exmouth, with the eye wall of the cyclone passing directly over the township generating gusts to 267 km/h. Around 10% of residential houses showed structural failure, with some types of housing experiencing significantly greater damage. By revisiting the impacts of TC Vance, we hope to guide thinking of emergency managers and local government on planning for when another category 5 TC strikes Exmouth. Using the best track information provided by the Bureau of Meteorology, we simulate the wind field of TC Vance using Geoscience Australia’s Tropical Cyclone Risk Model (TCRM), incorporating the local effects of topography, terrain and shielding afforded by neighbouring structures. This simulation is validated against observations of peak wind speed recorded at Learmonth Airport and other regional weather stations. The impacts of TC Vance are calculated for the present building stock in Exmouth, which has grown by nearly a third since 1999. Modern residential buildings perform very well, in line with the performance levels established by the wind loading standards for the region. Some groups of older buildings – specifically the U.S. Navy block houses that survived TC Vance unscathed – also perform very well. The analysis shows the town of Exmouth would still suffer substantial impacts, with around 700 buildings likely to suffer moderate to complete damage. This translates to around 1400 people, with at least half of those requiring temporary accommodation in the days and weeks immediately after the cyclone. These types of analysis help to reduce uncertainty and enhances decision-making for emergency services, enabling a more proportional response for rescue, damage assessments and initial recovery at the State, regional and local levels. From a strategic perspective it can also be used to identify and verify current and future capability needs for agencies involved in managing the cyclone hazard. Presented at the Australian Meteorological and Oceanographic Society Annual Meeting and the International Conference on Tropical Meteorology and Oceanography (AMOS-ICTMO 2019) Conference

  • Tropical cyclone Gita impacted the Kingdom of Tonga in February 2018, causing significant damage across the main island of Tongatapu. This dataset is a best estimate of the maximum local gust wind speed across Tongatapu, based on the best-available track information, elevation and land cover data. The data represents the maximum 0.2 second, 10-metre above ground level wind speed at (approximately) 25 metre horizontal resolution. The wind field was generated using: Geoscience Australia's Tropical Cyclone Risk Model - https://github.com/GeoscienceAustralia/tcrm Wind Multipliers code - https://github.com/GeoscienceAusralia/Wind_Multipliers TC Gita track was sourced from the Joint Typhoon Warning Center (http://www.metoc.navy.mil/jtwc/jtwc.html)

  • Tropical cyclone scenario prepared for Tonga National Emergency Management Office (NEMO) as part of the PacSAFE Project (2016-2018)

  • The local wind multiplier data for Tongatapu is used to generate local wind speeds over the island of Tongatapu, Tonga.

  • Natural hazard data supports the nation to respond effectively to emergencies, reduce the threat natural hazards pose to Australia¿s national interests and address issues relating to community safety, urban development, building design, climate change and insurance. A baseline understanding of hazards, impacts and risk can help to enhance community resilience to extreme events and a changing environment. Probabilistic hazard and risk information provides planners and designers opportunity to investigate the cost and benefit of policy options to mitigate natural hazard impacts. Modelled disaster scenario information can enable disaggregation of probabilistic hazard to identify the most probable event contributing to hazard. Tropical cyclone return period wind hazard maps developed using the Tropical Cyclone Risk Model. The hazard maps are derived from a catalogue of synthetic tropical cyclone events representing 10,000 years of activity. Annual maxima are evaluated from the catalogue and used to fit a generalised extreme value distribution at each grid point. Wind multipliers are factors that transform regional wind speed to local wind speed, mathematically describing the influences of terrain, shielding and topographic effects. Local wind speeds are critical to wind-related activities that include hazard and risk assessment. The complete dataset is comprised of: - Stochastic tracks, wind fields and impact data; - Probabilistic wind speed data (hazard); - Site-exposure wind multipliers.

  • The collection of products released for the 2018 National Tropical Cyclone Hazard Assessment (TCHA18). - 2018 National Tropical Cyclone Hazard Assessment - 2018 National Tropical Cyclone Hazard Assessment Stochastic Event Catalogue - 2018 National Tropical Cyclone Hazard Assessment Hazard Map - Tropical Cyclone Risk Model

  • This dataset provides an assessment of the tropical cyclone wind hazard for the Kingdom of Tonga. The data was generated to provide a collection of scenarios for detailed impact mapping as part of the PacSAFE project (2016-2018), funded by the Australian Department of Foreign Affairs and Trade. The dataset includes a catalogue of synthetic tropical cyclone tracks and the corresponding maximum wind swaths, average recurrence interval (ARI) wind speeds for ARIs from 5 to 10,000 years, and hazard profiles for selected locations within the simulation domain.