Basins
Type of resources
Keywords
Publication year
Topics
-
For more than half a century, seismic tomography has been used to map the volumetric structure of Earth’s interior, but only recent advances in computation have enabled the application of this technique at scale. Estimates of surface waves that travel between two seismic stations can be reconstructed from a stack of cross-correlations of continuous data recorded by seismometers. Here, we use data from the Exploring for the Future program AusArray deployment to extract this ambient noise signal of Rayleigh waves and use it to image mid- to upper-crustal structure between Tennant Creek and Mount Isa. Our aim was to establish a repeatable, semi-automatic workflow that can be extended to the entire Australian continent and beyond. Shear wave velocity models at 4, 6, 8 and 10 s periods are presented. A strong low-velocity anomaly (2.5 km/s) at a period of 4 s (~2–4 km depth) delineates the outline of the newly discovered, and prospective for hydrocarbons, Carrara Sub-basin. A near-vertical high-velocity anomaly (3.5 km/s) north of Mount Isa extends from the near surface down to ~12 km and merges with northeast-trending anomalies. These elongate features are likely to reflect compositional variations within the mid-crust associated with major structures inferred to be associated with base metal deposits. These outcomes demonstrate the utility of the ambient noise tomography method of imaging first-order features, which feed into resource potential assessments. <b>Citation: </b>Hejrani, B., Hassan, R., Gorbatov, A., Sambridge, M. Hawkins, R., Valentine, A., Czarnota, K. and Zhao, J., 2020. Ambient noise tomography of Australia: application to AusArray deployment. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4. <b>See eCat record <a href="https://dx.doi.org/10.26186/148676">#148676</a> for the updated version of the model package.</b>
-
The document summarises new seismic interpretation metadata for two key horizons from Base Jurassic to mid-Cretaceous strata across the western and central Eromanga Basin, and the underlying Top pre-Permian unconformity. New seismic interpretations were completed during a collaborative study between the National Groundwater Systems (NGS) and Australian Future Energy Resources (AFER) projects. The NGS and AFER projects are part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on previous work undertaken as part of the ‘Assessing the Status of Groundwater in the Great Artesian Basin’ (GAB) Project, commissioned by the Australian Government through the National Water Infrastructure Fund – Expansion (Norton & Rollet, 2022; Vizy & Rollet, 2022; Rollet et al., 2022; Rollet et al., in press.), the NGS Project (Norton & Rollet, 2023; Rollet et al., 2023; Vizy & Rollet, 2023) and the AFER Project (Bradshaw et al., 2022 and in press, Bernecker et al., 2022, Iwanec et al., 2023; Iwanec et al., in press). The recent iteration of revisions to the GAB geological and hydrogeological surfaces (Vizy & Rollet, 2022) provides a framework to interpret various data sets consistently (e.g., boreholes, airborne electromagnetic, seismic data) and in a 3D domain, to improve our understanding of the aquifer geometry, and the lateral variation and connectivity in hydrostratigraphic units across the GAB (Rollet et al., 2022). Vizy and Rollet (2022) highlighted some areas with low confidence in the interpretation of the GAB where further data acquisition or interpretation may reduce uncertainty in the mapping. One of these areas was in the western and central Eromanga Basin. New seismic interpretations are being used in the western Eromanga, Pedirka and Simpson basins to produce time structure and isochore maps in support of play-based energy resource assessment under the AFER Project, as well as to update the geometry of key aquifers and aquitards and the GAB 3D model for future groundwater management under the NGS Project. These new seismic interpretations fill in some data and knowledge gaps necessary to update the geometry and depth of key geological and hydrogeological surfaces defined in a chronostratigraphic framework (Hannaford et al., 2022; Bradshaw et al., 2022 and in press; Hannaford & Rollet, 2023). The seismic interpretations are based on a compilation of newly reprocessed seismic data (Geoscience Australia, 2022), as part of the EFTF program, and legacy seismic surveys from various vintages brought together in a common project with matching parameters (tying, balancing, datum correcting, etc.). This dataset has contributed to a consolidated national data coverage to further delineate groundwater and energy systems, in common data standards and to be used further in integrated workflows of mineral, energy and groundwater assessment. The datasets associated with the product provides value added seismic interpretation in the form of seismic horizon point data for two horizons that will be used to improve correlation to existing studies in the region. The product also provides users with an efficient means to rapidly access a list of core data used from numerous sources in a consistent and cleaned format, all in a single package. The following datasets are provided with this product: 1) Seismic interpretation in a digital format (Appendix A), in two-way-time, on key horizons with publically accessible information, including seismic interpretation on newly reprocessed data: Top Cadna-owie; Base Jurassic; Top pre-Permian; 2) List of surveys compiled and standardised for a consistent interpretation across the study area (Appendix B). 3) Isochore points between Top Cadna-owie and Base Jurassic (CC10-LU00) surfaces (Appendix C). 4) Geographical layer for the seismic lines compiled across Queensland, South Australia and the Northern Territory (Appendix D). These new interpretations will be used to refine the GAB geological and hydrogeological surfaces in this region and to support play-based energy resource assessments in the western Eromanga, Pedirka and Simpson basins.
-
A key challenge in exploring Australian onshore sedimentary basins is limited seismic data coverage. Consequently, well logs are often the main datasets that can be used to understand the subsurface geology. The primary aim of this study was to develop a methodology for visualising the three-dimensional (3D) tectonostratigraphic architecture of sedimentary basins using well data, which can then be used to quickly screen areas warranting more detailed studies of resource potential. This project has developed a workflow that generates 3D well correlations using sequence stratigraphic well tops to visualise the regional structural and stratigraphic architecture of the Amadeus, Canning, Officer and Georgina basins in the Centralian Superbasin. Thirteen Neoproterozoic‒Paleozoic supersequence tops were interpreted in 134 wells. Three-dimensional well correlations provide an effective regional visualisation of the tectonostratigraphic architecture across the main depocentres. This study redefines the Centralian Superbasin as encompassing all western, northern and central Australian basins that had episodically interconnected depositional systems driven by regional subsidence during one or more regional tectonic events between the Neoproterozoic and middle Carboniferous. The Centralian Superbasin began to form during Neoproterozoic extension, and underwent several phases of partial or complete disconnection and subsequent reconnection of depositional systems during various regional tectonic events before final separation of depocentres at the culmination of the Alice Springs Orogeny. Regional 3D correlation diagrams have been generated to show the spatial distribution of these supersequences, which can be used to visualise the distribution of stratigraphic elements associated with petroleum, mineral and groundwater systems. <b>Citation: </b>Bradshaw, B., Khider, K., MacFarlane, S., Rollet, N., Carr, L. and Henson, P., 2020. Tectonostratigraphic evolution of the Centralian Superbasin (Australia) revealed by three-dimensional well correlations. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
The structural evolution of the South Nicholson region is not well understood, hindering full appraisal of the resource potential across the region. Here, we outline new insights from a recent deep-reflection seismic survey, collected as part of the Australian Government’s Exploring for the Future initiative. The new seismic profiles, and new field observations and geochronology, indicate that the South Nicholson region was characterised by episodic development of a series of ENE-trending half grabens. These graben structures experienced two major episodes of extension, at ca. 1725 Ma and ca. 1640 Ma, broadly correlating with extensional events identified from the Lawn Hill Platform and the Mount Isa Province to the east. Southward stratal thickening of both Calvert and Isa Superbasin sequences (Paleoproterozoic Carrara Range and McNamara groups, respectively) into north-dipping bounding faults is consistent with syndepositional extension during half graben formation. Subsequent basin inversion, and reactivation of the half graben bounding faults as south-verging thrusts, appears to have been episodic. The observed geometry and offset are interpreted as the cumulative effect of multiple tectonic events, including the Isan Orogeny, with thrust movement on faults occurring until at least the Paleozoic Alice Springs Orogeny. <b>Citation:</b> Carson, C.J.. Henson, P.A., Doublier, M.P., Williams, B., Simmons, J., Hutton, L. and Close, D., 2020. Structural evolution of the South Nicholson region: insight from the 2017 L210 reflection seismic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
<b>This data package is superseded by a second iteration presenting updates on 3D geological and hydrogeological surfaces across eastern Australia that can be accessed through </b><a href="https://dx.doi.org/10.26186/148552">https://dx.doi.org/10.26186/148552</a> The Australian Government, through the National Water Infrastructure Fund – Expansion, commissioned Geoscience Australia to undertake the project ‘Assessing the Status of Groundwater in the Great Artesian Basin’ (GAB). The project commenced in July 2019 and will finish in June 2022, with an aim to develop and evaluate new tools and techniques to assess the status of GAB groundwater systems in support of responsible management of basin water resources. While our hydrogeological conceptual understanding of the GAB continues to grow, in many places we are still reliant on legacy data and knowledge from the 1970s. Additional information provided by recent studies in various parts of the GAB highlights the level of complexity and spatial variability in hydrostratigraphic units across the basin. We now recognise the need to link these regional studies to map such geological complexity in a consistent, basin-wide hydrostratigraphic framework that can support effective long-term management of GAB water resources. Geological unit markers have been compiled and geological surfaces associated with lithostratigraphic units have been correlated across the GAB to update and refine the associated hydrogeological surfaces. Recent studies in the Surat Basin in Queensland and the Eromanga Basin in South Australia are integrated with investigations from other regions within the GAB. These bodies of work present an opportunity to link regional studies and develop a revised, internally consistent geological framework to map geological complexity across the GAB. Legacy borehole data from various sources, seismic and airborne electromagnetic (AEM) data were compiled, then combined and analysed in a common 3D domain. Correlation of interpreted geological units and stratigraphic markers from these various data sets are classified using a consistent nomenclature. This nomenclature uses geological unit subdivisions applied in the Surat Cumulative Management Area (OGIA (Office of Groundwater Impact Assessment), 2019) to correlate time equivalent regional hydrogeological units. Herein we provide an update of the surface extents and thicknesses for key hydrogeological units, reconciling geology across borders and providing the basis for a consistent hydrogeological framework at a basin-wide scale. The new surfaces can be used for facilitating an integrated basin systems assessment to improve our understanding of potential impacts from exploitation of sub-surface resources (e.g., extractive industries, agriculture and injection of large volumes of CO2 into the sub-surface) in the GAB and providing a basis for more robust water balance estimates. This report is associated with a data package including (Appendix A – Supplementary material): • Nineteen geological and hydrogeological surfaces from the Base Permo-Carboniferous, Top Permian, Base Jurassic, Base Cenozoic to the surface (Table 2.1), • Twenty-one geological and hydrogeological unit thickness maps from the top crystalline basement to the surface (Figure 3.7 to Figure 3.27), • The formation picks and constraining data points (i.e., from boreholes, seismic, AEM and outcrops) compiled and used for gridding each surface (Table 3.8).
-
The Source Rock and Fluids Atlas delivery and publication services provide up-to-date information on petroleum (organic) geochemical and geological data from Geoscience Australia's Organic Geochemistry Database (ORGCHEM). The sample data provides the spatial distribution of petroleum source rocks and their derived fluids (natural gas and crude oil) from boreholes and field sites in onshore and offshore Australian basins. The services provide characterisation of source rocks through the visualisation of Pyrolysis, Organic Petrology (Maceral Groups, Maceral Reflectance) and Organoclast Maturity data. The services also provide molecular and isotopic characterisation of source rocks and petroleum through the visualisation of Bulk, Whole Oil GC, Gas, Compound-Specific Isotopic Analyses (CSIA) and Gas Chromatography-Mass Spectrometry (GCMS) data tables. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids that comprise two key elements of petroleum systems analysis. The composition of petroleum determines whether or not it can be an economic commodity and if other processes (e.g. CO2 removal and sequestration; cryogenic liquefaction of LNG) are required for development.
-
The Kidson Sub-basin covers ~91 000 km2, and is a largely under-explored and sparsely imaged region of the Canning Basin in northern Western Australia. The 872 km Kidson Sub-basin seismic survey was acquired to enhance understanding of the subsurface and thereby assist in the assessment of the region for hydrocarbon and mineral potential. Specifically, the survey aimed to improve basin-wide stratigraphic correlation, determine the extent of basin depocentres, image major structures and place constraints on the sub-basin’s geological event history. The new seismic profile reveals that the Kidson Sub-basin is ~500 km long and ~6.5 km deep. It contains a lower conformable package of Ordovician to Devonian clastic sediments, carbonates and evaporites unconformably overlain by the clastic-dominated Permian Grant Group and Poole Sandstone. Normal faults imaged at the base of the sequence with growth strata in the hanging wall constrain rifting to between Cambrian and Silurian in age. Folding along the southeastern edge of the basin is inferred to be a consequence of the Carboniferous Meda Transpression linked to the Alice Springs Orogeny in central Australia. The known source rocks of the Goldwyer and Bongabinni formations have been interpreted to extend across the Kidson Sub-basin, which is encouraging for energy prospectivity in the region. <b>Citation:</b> Southby, C., Carr, L.K., Henson, P., Haines, P.W., Zhan, A., Anderson, J.R., MacFarlane, S., Fomin, T. and Costelloe, R., 2020. Exploring for the Future: Kidson Sub-basin seismic interpretation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
The ‘Australia’s Future Energy Resources’ (AFER) project is a four-year multidisciplinary investigation of the potential energy commodity resources in selected onshore sedimentary basins. The resource assessment component of the project incorporates a series of stacked sedimentary basins in the greater Pedirka-western Eromanga region in eastern central Australia. Using newly reprocessed seismic data and applying spatially enabled, exploration play-based mapping tools, a suite of energy commodity resources have been assessed for their relative prospectivity. One important aspects of this study has been the expansion of the hydrocarbon resource assessment work flow to include the evaluation of geological storage of carbon dioxide (GSC) opportunities. This form of resource assessment is likely to be applied as a template for future exploration and resource development, since the storage of greenhouse gases has become paramount in achieving the net-zero emissions target. It is anticipated that the AFER project will be able to highlight future exploration opportunities that match the requirement to place the Australian economy firmly on the path of decarbonisation.
-
Geoscience Australia’s Exploring for the Future (EFTF) program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. Further detail is available at http://www.ga.gov.au/eftf. The National Groundwater Systems (NGS) project, is part of the Australian Government’s Exploring for the Future (EFTF) program, led by Geoscience Australia (https://www.eftf.ga.gov.au/national-groundwater-systems), to improve understanding of Australia’s groundwater resources to better support responsible groundwater management and secure groundwater resources into the future. The project is developing new national data coverages to constrain groundwater systems, develop a new map of Australian groundwater systems and improve data standards and workflows of groundwater assessment to populate a consistent data discovery tool and web-based mapping portal to visualise, analyse and download hydrogeological information. While our hydrogeological conceptual understanding of Australian groundwater systems continues to grow in each State and Territory jurisdiction, in addition to legacy data and knowledge from the 1970s, new information provided by recent studies in various parts of Australia highlights the level of geological complexity and spatial variability in stratigraphic and hydrostratigraphic units across the continent. We recognise the need to standardise individual datasets, such as the location and elevation of boreholes recorded in different datasets from various sources, as well as the depth and nomenclature variations of stratigraphic picks interpreted across jurisdictions to map such geological complexity in a consistent, continent-wide stratigraphic framework that can support effective long-term management of water resources and integrated resource assessments. This stratigraphic units data compilation at a continental scale forms a single point of truth for basic borehole data including 47 data sources with 1 802 798 formation picks filtered to 1 001 851 unique preferred records from 171 367 boreholes. This data compilation provides a framework to interpret various borehole datasets consistently, and can then be used in a 3D domain as an input to improve the 3D aquifer geometry and the lateral variation and connectivity in hydrostratigraphic units across Australia. The reliability of each data source is weighted to use preferentially the most confident interpretation. Stratigraphic units are standardised to the Australian Stratigraphic Units Database (ASUD) nomenclature (https://asud.ga.gov.au/search-stratigraphic-units) and assigned the corresponding ASUD code to update the information more efficiently when needed. This dataset will need to be updated as information grows and is being revised over time. This dataset provides: 1. ABSUC_v1 Australian stratigraphic unit compilation dataset (ABSUC) 2. ABSUC_v1_TOP A subset of preferred top picks from the ABSUC_v1 dataset 3. ABSUC_v1_BASE A subset of preferred base picks from the ABSUC_v1 dataset 4. ABSUC_BOREHOLE_v1 ABSUC Borehole collar dataset 5. ASUD_2023 A subset of the Australia Stratigraphic Units Database (ASUD) This consistent stratigraphic units compilation has been used to refine the Great Artesian Basin geological and hydrogeological surfaces in this region and will support the mapping of other regional groundwater systems and other resources across the continent. It can also be used to map regional geology consistently for integrated resource assessments.
-
<div>The interpretation of AusAEM airborne electromagnetic (AEM) survey conductivity sections in the Canning Basin region delineates the geo-electrical features that correspond to major chronostratigraphic boundaries, and captures detailed stratigraphic information associated with these boundaries. This interpretation forms part of an assessment of the underground hydrogen storage potential of salt features in the Canning Basin region based on integration and interpretation of AEM and other geological and geophysical datasets. A main aim of this work was to interpret the AEM to develop a regional understanding of the near-surface stratigraphy and structural geology. This regional geological framework was complimented by the identification and assessment of possible near-surface salt-related structures, as underground salt bodies have been identified as potential underground hydrogen storage sites. This study interpreted over 20,000 line kilometres of 20 km nominally line-spaced AusAEM conductivity sections, covering an area approximately 450,000 km2 to a depth of approximately 500 m in northwest Western Australia. These conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This interpretation produced approximately 110,000 depth estimate points or 4,000 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for Geoscience Australia’s Estimates of Geological and Geophysical Surfaces database, the national repository for formatted depth estimate points. Despite these interpretations being collected to support exploration of salt features for hydrogen storage, they are also intended for use in a wide range of other disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. Therefore, these interpretations will benefit government, industry and academia interested in the geology of the Canning Basin region.</div>