From 1 - 10 / 31
  • The Thomson Orogen of eastern Australia is a major component of the Tasmanides and has historically been poorly understood and overlooked for exploration due to extensive sedimentary cover including the Eromanga Basin. To further understanding and encourage exploration of this area, Geoscience Australia, the Geological Survey of Queensland and the Geological Survey of New South Wales (NSW) have undertaken a major multidisciplinary geoscientific programme in the southern Thomson Orogen (STO) as a part of the UNCOVER initiative. A major outcome of this project has been the completion of twelve stratigraphic diamond drill holes between 2016 and 2017. SHRIMP U–Pb zircon dating of magmatic and metasedimentary rocks intersected by the boreholes provide new insights into the geological evolution and mineral prospectivity of this region. Geochronology of three intrusive rocks intersected by new boreholes in the NSW part of STO have late Silurian ages of ~425 Ma (Tongo 1), ~421 Ma (Janina 1) and ~421 Ma (Congararra 1). The age of the granodiorite intersected by Tongo 1 is within uncertainty of the intrusion-related Mo-W and later Au-base metal mineralisation at the Cuttaburra and F1 prospects located ~20 km southeast of the Tongo 1 borehole. Additionally, previously unknown volcanic events have been revealed by a dacitic ignimbrite (~387 Ma) in borehole GSQ Eulo 2 (Queensland) and a rhyolite (~395 Ma) in borehole, Milcarpa 1 (NSW). Detrital zircon geochronology has also played an important role in characterising undercover units such as the Werewilka Formation and Nebine Metamorphics, interpreted from geophysical data sets. This abstract was submitted to and presented at the 2018 Australian Geoscience Council Convention (AGCC) (https://www.agcc.org.au/)

  • This Record presents data collected between March and September 2018 as part of the ongoing Northern Territory Geological Survey–Geoscience Australia (NTGS–GA) SHRIMP geochronology project under the National Collaborative Framework (NCF) agreement and Geoscience Australia's Exploring for the Future Programme. Five new U–Pb SHRIMP zircon geochronological results derived from five samples of meta-igneous and metasedimentary rocks from MOUNT RENNIE (southwestern Aileron Province and northwestern Warumpi Province) in the Northern Territory are presented herein. All five samples are located at or close to the recently discovered greenfield Grapple and Bumblebee prospects that contain precious and base metal sulfide mineralisation. This Record represents the first attempt to provide temporal constraints on the country rocks that host or occur close to this mineralisation. <b>Bibliographic Reference:</b> Kositcin N, McGloin MV, Reno BL and Beyer EE, 2019. Summary of results. Joint NTGS–GA geochronology project: Cu-Au-Ag-Zn mineralisation in MOUNT RENNIE, Aileron and Warumpi provinces, March – September 2018. <i>Northern Territory Geological Survey</i>, <b>Record 2019-011</b>.

  • <div>This Record is the fourth of a series of reports detailing the results of U–Pb dating of samples collected during investigations of the Mary Kathleen Domain and adjacent areas of the Mount Isa Inlier in 2018–19 by the Geological Survey of Queensland and co-workers (Kositcin <em>et al</em>., 2019, 2021, Bodorkos <em>et al</em>., 2020). It presents new Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronological results for five samples collected from the inlier. Two of the samples are from units in the Kalkadoon–Leichhardt Domain and the remaining three from units in the adjacent Mary Kathleen Domain (Figure i). The ages of these units are poorly constrained and various ages have been proposed for most of them by different investigators.</div><div> <b>Bibliographic Reference:</b> Kositcin, N., Bultitude, R. J., Purdy, D. J. 2023. <i>Summary of results. Joint GSQ–GA Geochronology Project: Kalkadoon–Leichhardt and Mary Kathleen Domains, 2018–2020. </i>GSQ Record 2023/04, Geological Survey of Queensland. GA Record 2023/41, Geoscience Australia, Canberra. http://dx.doi.org/10.26186/148600 https://geoscience.data.qld.gov.au/data/report/cr141810

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This Record presents new U-Pb zircon geochronology from the Loch-Lilly Kars and Lake Wintlow (as described by Clark et al. 2024) Belts of the central Delamerian Orogen (Foden et al., 2020; Gilmore et al., 2023; Mole et al., 2023), performed on Geoscience Australia’s (GA) sensitive high-resolution ion microprobe (SHRIMP). The eight samples presented here (three sedimentary and five igneous rocks; Table i) were collected during Geoscience Australia’s drilling campaign across the region, which consisted of 17 drill-holes (Pitt et al., 2023), using two drilling techniques (coiled-tube rotary and conventional diamond). This work was performed as part of the MinEx CRC National Drilling initiative (NDI) and Geoscience Australia’s Darling-Curnamona-Delamerian project of the Exploring for the Future program (EFTF; <a href="https://www.eftf.ga.gov.au/">https://www.eftf.ga.gov.au/</a>). The primary aims of this drilling were to (1) understand and constrain the geology of the southern Loch-Lilly Kars Belt; and (2) assess whether Cambrian magmatic rocks continued to the south-west in the Lake Wintlow Belt, marking a possible continuation of the Stavely Belt volcanic arc rocks observed in western Victoria (Bowman et al., 2019; Lewis et al., 2016; Lewis et al., 2015; Schofield, 2018; Figure i). As both these regions are covered, this new drilling and the geochronology they allow provide the first constraints on the age of these rock units. In addition, due to the lack of surface correlation and detailed geological mapping, these units currently have no officially-defined stratigraphic nomenclature and remain unnamed. For detailed information on all drill-holes completed as part of the survey, we direct readers to the summary report by Pitt et al. (2023): <a href="https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/148639">eCat 148639</a>.

  • <p>This record presents new zircon and titanite U–Pb geochronological data, obtained via Sensitive High Resolution Ion Microprobe (SHRIMP) for twelve samples of plutonic and volcanic rocks from the Lachlan Orogen and the New England Orogen, and two samples of hydrothermal quartz veins from the Cobar region. Many of these new ages improve existing constraints on the timing of mineralisation in New South Wales, as part of an ongoing Geochronology Project (Metals in Time), conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework (NCF) agreement. The results herein (summarised in Table 1.1 and Table 1.2) correspond to zircon and titanite U–Pb SHRIMP analysis undertaken on GSNSW mineral systems projects for the reporting period July 2016–June 2017. Lachlan Orogen <p>The Lachlan Orogen samples reported herein are sourced from operating mines, active prospects, or regions with historical workings. The new dates constrain timing of mineralisation by dating the units which host or crosscut mineralisation, thereby improving understanding of the mineralising systems, and provide stronger constraints for mineralisation models. <p>In the eastern Lachlan Orogen, the new dates of 403.9 ± 2.6 Ma for the Whipstick Monzogranite south of Bega, and 413.3 ± 1.8 Ma for the Banshea Granite north of Goulburn both provide maximum age constraints for the mineralisation they host (Whipstick gold prospect and Ruby Creek silver prospect, respectively). At the Paupong prospect south of Jindabyne, gold mineralisation is cut by a dyke with a magmatic crystallisation age of 430.9 ± 2.1 Ma, establishing a minimum age for the system. <p>The 431.1 ± 1.8 Ma unnamed andesite and the 428.4 ± 1.9 Ma unnamed felsic dyke at the Dobroyde prospect 10 km north of Junee are just barely distinguishable in age, in the order that is supported by field relationships. The andesite is the same age as the c. 432 Ma Junawarra Volcanics but has different geochemical composition, and is younger than the c. 437 Ma Gidginbung Volcanics. The two unnamed units pre-date mineralisation, and are consistent with Pb-dating indicating a Tabberaberran age for mineralisation at the Dobroyde gold deposit. <p>Similarly, the 430.5 ± 3.4 Ma leucogranite from Hickory Hill prospect (north of Albury) clarifies that this unit originally logged as Jindera Granite (since dated at 403.4 ± 2.6 Ma) is instead affiliated with the nearby Mount Royal Granite, which has implications for the extent of mineralisation hosted within this unit. <p>Cobar Basin <p>Titanite ages of 382.5 ± 2.6 Ma and 383.4 ± 2.9 Ma from hydrothermal quartz veins that crosscut and postdate the main phase of mineralisation at the Hera mine in the Cobar region constrain the minimum age for mineralisation. These ages are indistinguishable from a muscovite age of 381.9 ± 2.2 Ma interpreted to be related to late- or post-Tabberaberan deformation event, and these results indicate that mineralisation occurred at or prior to this deformation event. <p>New England Orogen <p>The new ages from granites of the New England Orogen presented in this record aid in classification of these plutons into various Suites and Supersuites, and these new or confirmed relationships are described in detail in Bryant (2017). Many of these plutons host mineralisation, so the new ages also provide maximum age constraints in the timing of that mineralisation. <p>The 256.1 ± 1.3 Ma age of the Deepwater Syenogranite 40 km north of Glen Innes indicates that it is coeval with the 256.4 ± 1.6 Ma (Black, 2006) Arranmor Ignimbrite Member (Emmaville Volcanics) that it intrudes, demonstrating that both intrusive and extrusive magmatism was occurring in the Deepwater region at the same time. The 252.0 ± 1.2 Ma age for the Black Snake Creek Granite northeast of Tenterfield is consistent with its intrusive relationship with the Dundee Rhyodacite (254.34 ± 0.34 Ma; Brownlow et al., 2010). Similarly, the 251.2 ± 1.3 Ma age for the Malara Quartz Monzodiorite southeast of Tenterfield is consistent with field relationships that demonstrate that it intrudes the Drake Volcanics (265.3 ± 1.4 Ma–264.4 ± 2.5 Ma, Cross and Blevin, 2010; Waltenberg et al., 2016). <p>The 246.7 ± 1.5 Ma Cullens Creek Granite north of Drake was dated in an attempt to provide a stronger age constraint on mineral deposits that also cut the Rivertree and Koreelan Creek plutons (249.1 ± 1.3 Ma and 246.3 ± 1.4 Ma respectively, Chisholm et al., 2014a). However, the new age is indistinguishable from the Koreelan Creek Granodiorite, and timing of mineralisation is not further constrained, but the new age demonstrates a temporal association between the Cullens Creek and Koreelan Creek plutons. <p>The 239.1 ± 1.2 Ma age for the Mann River Leucogranite west of Grafton is indistinguishable in age from plutons in the Dandahra Suite and supports its inclusion in this grouping. The new age also constrains the timing of the distal part of the Dalmorton Gold Field, and implies that the gold vein system postdates the Hunter-Bowen orogeny. <p>The 232.7 ± 1.0 Ma Botumburra Range Monzogranite east of Armidale is younger than most southern New England granites, but this age is very consistent with the Coastal Granite Association (CGA), and the new age, along with the previously noted petrographic similarities (Leitch and McDougall, 1979) supports incorporation of the Botumburra Range Monzogranite into the Carrai Supersuite of the CGA (Bryant, 2017).

  • This Record presents new U-Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from six samples of igneous rocks and four samples of sedimentary rocks, collected from south-central New South Wales. The work is part of an ongoing Geochronology Project, conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework (NCF) agreement, to better understand the geological evolution of the central Lachlan Orogen in the East Riverina region. The results presented herein correspond to the reporting period July 2015-June 2016.

  • <p>Understanding the geological evolution and resource prospectivity of a region relies heavily on the integration of different geological and geophysical datasets. Geochronology is one key dataset, as it underpins meaningful geological correlations across large regions, and also contributes to reconstruction of past tectonic settings. Using geochronology in combination with other datasets requires the geochronology data to be available in a unified dataset with a consistent format. Northern Australia is a vast and relatively underexplored area that offers enormous potential for the discovery of mineral and energy resources. The area has a long and variably complex tectonic history, which is yet to be fully understood. Numerous geochronology studies have been completed at various scales throughout northern Australia over several decades; however, these data are scattered amongst numerous sources, limiting the ease with which they can be used collectively. <p>The objective of this work is: <p>(1) to combine Uranium–Lead (U–Pb) data across north-northeastern Australia into one consistent dataset, and <p>(2) to visualise the temporal and spatial distribution of the U–Pb age data through thematic maps as a tool for better understanding the geological evolution and resource potential of northern Australia. <p>In this contribution, over 2000 U–Pb ages from the Northern Territory, Queensland, eastern Western Australia and northern South Australia have been compiled into a single, consistent dataset. Data were sourced from Geoscience Australia, State and Territory geological surveys and from academic literature. The compilation presented here includes age data from igneous, metamorphic and sedimentary rocks. Thematic maps of magmatic crystallisation ages, high-grade metamorphic ages and sedimentary maximum depositional ages have been generated using the dataset. These maps enable spatial and temporal trends in the rock record to be visualised up to semi-continental scale and form a component of the ‘Isotopic Atlas’ of northern Australia currently being compiled by Geoscience Australia.

  • <div>Archean crustal evolution, and its tectonic paradigm, can be directly linked to the evolution of the mantle, the hydrosphere-atmosphere, oxygenation of the Earth, and the formation and storage of ore deposits. Hence, it is vital to understand the evolution of the early crust if we are to understand our planet’s evolution as well as transformational events in its history.</div><div> The collection of vast amounts of isotopic data, especially U-Pb, Sm-Nd, Lu-Hf, and δ18O, over the last 30 years, has significantly advanced our understanding of crustal processes and their timing. However, we rarely look at these data in a spatial context. This study aims to constrain the time-space evolution of the south-east Superior Craton, Canada, by mapping the zircon Hf-O isotopes and trace element data from 148 Archean magmatic rocks (6340 total analyses).</div><div> In Lu-Hf space, the dataset demonstrates the highly juvenile nature of this region, with the majority of values between εHfi +6 and +2. When plotted spatially, the most juvenile data (+4 to +6 εHfi) delineate an E-W oriented zone, broadly in-line and sub-parallel to the Cadillac-Larder Lake and Porcupine-Destor structures. Surrounding this juvenile region is less juvenile crust (0 to +3 εHf). Corresponding δ18O values show that light to mantle-like data (3.0-5.6‰) correlate with the most juvenile crust imaged by the εHf, with heavier δ18O (5.8-7.5‰) plotting to the south, east and west of this zone. Zircon trace element proxies for hydration (Eu/Eu*), oxidation (ΔFMQ using Ti, Ce, U), and continental vs. oceanic origin (Ui/Yb) replicate the pattern observed in the Lu-Hf and δ18O. This suggests that, broadly, the SE Superior consists of a central E-W orientated juvenile zone consisting of the most reduced, least hydrated, least continental, and most high-temperature hydrothermally-altered crust. This zone is surrounded by crust which is more hydrated, oxidised, has a greater supracrustal δ18O component, and is slightly less juvenile. The major ore systems of the Abitibi subprovince, including VMS, gold and komatiite-hosted Ni-Cu-PGE systems, fall within the E-W highly-juvenile zone.</div><div> Current tectonic models for this region of the Superior Craton range from (1) long-lived Neoarchean subduction across the whole Abitibi tectono-thermal ‘event’ (2750-<2695 Ma) – ‘horizontal’ tectonics; and (2) a variety of non-arc processes such as plume-related crustal overthickening (i.e., oceanic plateau), sagduction/drip tectonics, and subcretion, amongst others – ‘vertical’ tectonics. Models combining arc and non-arc processes have also been suggested (i.e., plume-arc interaction), and our data broadly support a combined model. We propose the E-W zone delineated by the various geochemical data represents a paleo-rift zone, driven by ambient mantle or mantle plume processes. The dry, reduced, oceanic character of the zone appears to preclude an arc or back-arc setting prior to ca. 2.7 Ga. However, temporal changes in hydration, oxidation, and the increased heavy δ18O component at ca. 2.7 Ga suggest a major geodynamic shift, potentially marking the onset of subduction and associated compression. This is contribution 2020-050 of the Mineral Exploration Research Centre (MERC) Metal Earth project.</div><div> This Abstract was submitted/presented to the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)

  • <div>New Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronological results for fifteen Proterozoic and late Paleozoic samples, thirteen from the Georgetown Region and two from the adjacent Cairns Region, are presented in this Record. Eleven of the samples are from cores of basement units intersected in drillholes that penetrated overlying rocks of the Karumba (Cenozoic) and Carpentaria (Mesozoic) basins. Three of these are gneisses from the undercover extension of the Yambo Subprovince (Etheridge Province) in the northeastern part of the Georgetown Region, four are of Mesoproterozoic granites from the Forsayth Subprovince (Etheridge Province) and Croydon Province farther south, and the remaining eight are from units forming part of the Carboniferous–Permian Kennedy Igneous Association, including two from surface outcrops in the Georgetown Region and two from surface outcrops in the adjacent Cairns Region.</div><div><br></div>

  • This Record presents new U Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from nine samples of sedimentary rocks collected from the Paleo- to Neoproterozoic Birrindudu and Victoria Basins, and underlying basement from the Victoria River catchment region, northwest Northern Territory. The newly acquired U–Pb SHRIMP data are discussed and integrated with existing detrital zircon geochronology to assist in the determination of maximum depositional ages and sedimentary provenance during the evolution of the Birrindudu and Victoria Basins, and contribute to lithostratigraphic correlations with other Proterozoic basins across northern Australia (e.g., the greater McArthur Basin and the Centralian Superbasin, Walter et al., 1995; Munson et al., 2013; Carson, 2013; Munson, 2016).