palaeomagnetism
Type of resources
Keywords
Publication year
Topics
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Batemans Bay Narooma magnetic first vd grid geodetic is a first vertical derivative of the Total Magnetic Intensity grid for the Batemans Bay-Narooma, NSW, 1998. This grid has a cell size of 0.00049 degrees (approximately 50m). The grid has units of nanoTesla per km (or nT/km). The data used to produce the TMI grid was acquired in 1998 by the NSW Government, and consisted of 7792 line-kilometres of data at 250m line spacing and 60m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area I Albury magnetic first vd grid geodetic is a first vertical derivative of the Total Magnetic Intensity grid for the NSW DMR, Discovery 2000, 1994-95, AREA I, Albury. This grid has a cell size of 0.00049 degrees (approximately 50m). The grid has units of nanoTesla per km (or nT/km). The data used to produce the TMI grid was acquired in 1996 by the NSW Government, and consisted of 35041 line-kilometres of data at 250m line spacing and 60m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area G SE Darling Basin magnetic first vd grid geodetic is a first vertical derivative of the Total Magnetic Intensity grid for the NSW DMR, Discovery 2000, 1995, S.E. Darling Basin, AREA G. This grid has a cell size of 0.00097 degrees (approximately 100m). The grid has units of nanoTesla per km (or nT/km). The data used to produce the TMI grid was acquired in 1995 by the NSW Government, and consisted of 42604 line-kilometres of data at 400m line spacing and 80m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Taltingan 1 100k magnetic grid geodetic has a cell size of 0.00021 degrees (approximately 21m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1994 by the NSW Government, and consisted of 56310 line-kilometres of data at a line spacing between 100m and 400m, and 60m terrain clearance.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Broken Hill Detail magnetic grid geodetic has a cell size of 0.00021 degrees (approximately 21m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1994 by the NSW Government, and consisted of 56310 line-kilometres of data at a line spacing between 100m and 400m, and 60m terrain clearance.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Otway Basin magnetic grid geodetic has a cell size of 0.001 degrees (approximately 99m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1994 by the SA, VIC Government, and consisted of 44345 line-kilometres of data at 500m line spacing and 130m terrain clearance.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area E Northern Parkes magnetic first vd grid geodetic is a first vertical derivative of the Total Magnetic Intensity grid for the NSW DMR, Discovery 2000, 1994-95, AREA E, Northern Parkes. This grid has a cell size of 0.00049 degrees (approximately 50m). The grid has units of nanoTesla per km (or nT/km). The data used to produce the TMI grid was acquired in 1995 by the NSW Government, and consisted of 122000 line-kilometres of data at 250m line spacing and 60m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area A4 Koonenberry magnetic grid geodetic has a cell size of 0.00048 degrees (approximately 50m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 67000 line-kilometres of data at 250m line spacing and 60m terrain clearance.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Merlinleigh magnetic grid geodetic has a cell size of 0.001 degrees (approximately 106m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1995 by the WA Government, and consisted of 45278 line-kilometres of data at 500m line spacing and 80m terrain clearance.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area A3 Bancannia Trough magnetic grid geodetic has a cell size of 0.00048 degrees (approximately 50m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 21000 line-kilometres of data at 400m line spacing and 80m terrain clearance.