From 1 - 10 / 67
  • Earth comprises systems of enormous complexity that sustain all life and control the distribution of our mineral, energy and water resources. Increasingly earth scientists are now moving away from focusing on single domain research on understanding isolated parts of these intricate systems to adopting multidisciplinary, computationally intensive integrated methodologies to model and simulate the real world complexities of earth systems science. Simultaneously developments in information technology are increasing the capacity of computational systems to credibly simulate complex systems. Real world Solid Earth and Environmental Science data sets are extremely heterogenous, complex and large, and are currently in the order of terabytes (1012 bytes). However, the size and complexity of geoscience data sets are also exponentially increasing, as more powerful modern computing systems combine with enhanced engineering capacity to design and build automated instruments to collect more data and new data types. We are rapidly moving into an era when Earth Scientists will need to have the capacity to analyse petabyte (1015 bytes) databases if they are to realistically model and simulate complex earth processes. Although digital geoscientific data sets are becoming increasingly available over the Internet, current Internet technologies only allow for the downloading of data (if the connection is fast enough): integration, processing and analysis then has to take place locally. As data sets get larger and more complex, then large computational resources are required to effectively process these data. Such resources are increasingly only available to the major industry players, which in turn creates a strong bias against the Small to Middle Enterprises, as well as many University researchers. For those that do not have access to large-scale computing resources, analysis of these voluminous data sets has to be compromised by dividing the data set into smaller units, accepting sub-optimal solutions and/or introducing sub-optimal approximations. It is clear that if we are to begin grappling with accurate analysis of large-scale geoscientific data sets to enable sustainable management of our mineral, energy and water resources, then current computational infrastructures are no longer viable.

  • National Elevation Data Audit is a report outlining all elevation data available across all Australian jurisdictions which was identified by the Intergovernment Committee on Surveying and Mapping's (ICSM) Permanent Committee on Topographic Information (PCTI).

  • This documentation manual for the national mineral deposits dataset provides the necessary description of AGSO's mineral deposit database (OZMIN) - its structure, the main data and authority tables used by OZMIN, database table definitions, details on the Microsoft Access version of the database and a listing of those deposits in the dataset.

  • We propose an automated capture system that follows the fundamental scientific methodology. It starts with the instrument that captures the data, uses web services to make standardised data reduction programs more widely accessible, and finally uses internationally agreed data transfer standards to make geochemical data seamlessly accessible online from a series of internationally distributed certified repositories. The Australian National Data Service (http://www.ands.org.au/) is funding a range of data capture solutions to ensure that the data creation and data capture phases of research are fully integrated to enable effective ingestion into research data and metadata stores at the institution or elsewhere. They are developing a national discovery service that enables access to data in institutional stores with rich context. No data is stored in this system, only metadata with pointers back to the original data. This enables researchers to keep their own data but also enables access to many repositories at once. Such a system will require standardisation at all phases of the process of analytical geochemistry. The geochemistry community needs to work together to develop standards for attributes as the data are collected from the instrument, to develop more standardised processing of the raw data and to agree on what is required for publishing. An online-collaborative workspace such as this would be ideal for geochemical data and the provision of standardised, open source software would greatly enhance the persistence of individual geochemistry data collections and facilitate reuse and repurposing. This conforms to the guidelines from Geoinformatics for Geochemistry (http://www.geoinfogeochem.org/) which requires metadata on how the samples were analysed.

  • The International Forest Carbon Initiative, IFCI, is part of Australia's contribution to international efforts on reducing carbon emissions from deforestation and forest degradation. It focuses on technology transfer to developing countries by assisting them to implement national carbon accounting schemes modelled on that established by the Department of Climate Change and Energy Efficiency. Key inputs to those accounting schemes are mosaics of the best available satellite scenes in a given year. Collections of these mosaics, spanning periods of at least a decade, are used to determine changes to the extent and type of forest cover. Those characterisations are used to determine net forest carbon flux, which is a significant component of overall carbon flows in tropical countries. In support of these activities, Geoscience Australia manages a project to obtain, process, archive and distribute large volumes of satellite data, initially with a focus on Indonesia and other parts of Asia. Three key changes from 'business as usual' activities were required to process and manage, on a large scale, a satellite data time-series to support the International Forest Carbon Initiative. First, at Geoscience Australia, a new facility known as the Earth Observation Data Store is being developed. Secondly, innovative techniques such as the use of USB Flash Drives for data distribution and of DVDs for quick look catalogue distribution have proved beneficial for the participating agencies in developing countries, as well as for data transfers from regional satellite archives. Thirdly, much of the data, especially the Landsat satellite imagery, has for the first time been made available to the users with minimal restrictions, via the employment of open content licensing known as Creative Commons.

  • Legacy product - no abstract available

  • Digital technology and the Internet have contributed to the information explosion and in part the widespread increase in the use of spatial information. In this regard community needs for geoscientific information has extended beyond the traditional area of mineral and petroleum exploration. Geoscience is now recognised by society as having a part to play in the achievement of social wellbeing and environmental outcomes. This paper examines whether the geoscience data providers are playing their part in the data explosion. It looks at how geoscience can be applied to real world problems and questions whether the data providers are up to the mark in satisfying the immediate expectations of users as well as initiating new areas of application. The discussion incorporates issues of price, accessibility, formats and data assemblage in relation to a hierarchy of need for decision making.

  • NOTE: removed on request: 25 May 2016 by Sundaram Baskaran GWATER is a corporate database designed to accommodate a number of existing project groundwater and surface water data sets in AGSO. One of the aims in developing the database as a corporate repository is to enable sharing between AGSO projects allowing re-use of data sets derived from various sources such as the State and Territory water authorities. The database would also facilitate an easier exchange of data between AGSO and these authorities. This document presents an overview of the current structure of the database, and describes the present data entry and retrieval forms in some detail. Definitions of all tables and data fields contained within them are listed in an appendix. The database structure will not remain static. Future developments, such as the integration of data directly out of the database into geographic information systems, are expected to lead to modifications in the database structure with possible addition of new tables or fields. Use of GWATER by a range of project areas will undoubtedly lead to different needs in accessing the data, resulting in the request for further development of the data access tools.

  • This documentation manual for the Mount Isa dataset provides description of AGSOs mineral deposit database (OZMIN) - it's structure, the main data and authority tables used by OZMIN, database table definitions, details on the Microsoft Access version of the database and a listing of those deposits in the Mount Isa dataset