MTPy
Type of resources
Keywords
Publication year
Topics
-
The magnetotelluric (MT) method is increasingly being applied to a wide variety of geoscience problems. However, the software available for MT data analysis and interpretation is still very limited in comparison to many of the more mature geophysical methods such as the gravity, magnetic or seismic reflection methods. MTPy is an open source Python package to assist with MT data processing, analysis, modelling, visualization and interpretation. It was initiated at the University of Adelaide in 2013 as a means to store and share Python code amongst the MT community (Krieger and Peacock 2014). Here we provide an overview of the software and describe recent developments to MTPy. These include new functionality and a clean up and standardisation of the source code, as well as the addition of an integrated testing suite, documentation, and examples in order to facilitate the use of MT in the wider geophysics community.
-
The magnetotelluric (MT) method is increasingly being applied to map tectonic architecture and mineral systems. Under the Exploring for the Future (EFTF) program, Geoscience Australia has invested significantly in the collection of new MT data. The science outputs from these data are underpinned by an open-source data analysis and visualisation software package called MTPy. MTPy started at the University of Adelaide as a means to share academic code among the MT community. Under EFTF, we have applied software engineering best practices to the code base, including adding automated documentation and unit testing, code refactoring, workshop tutorial materials and detailed installation instructions. New functionality has been developed, targeted to support EFTF-related products, and includes data analysis and visualisation. Significant development has focused on modules to work with 3D MT inversions, including capability to export to commonly used software such as Gocad and ArcGIS. This export capability has been particularly important in supporting integration of resistivity models with other EFTF datasets. The increased functionality, and improvements to code quality and usability, have directly supported the EFTF program and assisted with uptake of MTPy among the international MT community. <b>Citation:</b> Kirkby, A.L., Zhang, F., Peacock, J., Hassan, R. and Duan, J., 2020. Development of the open-source MTPy package for magnetotelluric data analysis and visualisation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.