From 1 - 10 / 33
  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Galilee Basin region. This web service summarises salinity, water levels, resource size, potential aquifer yield and surface water–groundwater interactions for the Eromanga Basin located within the Galilee Basin region.

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Eromanga Basin region. This web service summarises shale resources and coal seam gas prospectivity of the Eromanga Basin.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Galilee Basin region. This web service summarises salinity, water levels, resource size, potential aquifer yield and surface water–groundwater interactions for the Eromanga Basin located within the Galilee Basin region.

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Eromanga Basin region. This data guide gives an example of how these data can be used to create the components of a workflow to identify unconventional hydrocarbon resource opportunities. The data guide is designed to support the data package that provide insights on unconventional hydrocarbon resources in the Eromanga Basin. The unconventional hydrocarbon assessment for the Eromanga Basin includes shale resources (shale oil and gas) and coal seam gas for 6 of the 9 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023a, 2023b). Tight gas was not assessed due to play intervals lying above the zone of significant overpressure zone (2,800 m below ground level) in the Cooper-Eromanga region. The assessment captures data from well completion reports and government data sources to inform the components required for unconventional hydrocarbons to be present in the Eromanga Basin. The assessment captures data from the Great Artesian Basin geological and hydrogeological surfaces update (Vizy and Rollet, 2022), the Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal (2020a), the Petroleum Exploration and Production System of South Australia (PEPS, 2021) and Draper 2002. These datasets were used to map out gross depositional environments and their geological properties relevant for unconventional hydrocarbon assessments. The data are compiled at a point in time to inform decisions on resource development activities. The data guide will outline the play-based workflow for assessing unconventional hydrocarbon prospectivity. Each of the elements required for a prospective unconventional hydrocarbon system is explained and mapped. These data are integrated and merged to show the relative assessment of unconventional prospectivity across the basin, at both play interval and basin scale. As an example of assessments contained within the dataset, this data guide showcases the prospectivity of shale resources in the Birkhead Play interval.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Cooper Basin region. This web service summarises salinity, water levels, resource size, potential aquifer yield and surface water–groundwater interactions for the Eromanga Basin located within the Cooper Basin region.

  • Publicly available groundwater data have been compiled to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This web service summarises salinity, water levels, resource size, potential aquifer yield and surface water–groundwater interactions for the Eromanga Basin located within the Adavale Basin region.

  • <div>This Geoscience Australia Record reports on Interferometric Synthetic Aperture Radar (InSAR) processing over the Great Artesian Basin (GAB) to support an improved understanding of the groundwater system and water balance across the region. InSAR is a geodetic technique that can identify ground surface movement from satellite data at a regional scale and is therefore a valuable and widely used technique for measuring patterns in surface movement over time; including the movement of fluids (i.e. water or gas) beneath the surface.</div><div><br></div><div>This Record is the one of two Geoscience Australia Records that describe ground surface movement monitoring Geoscience Australia have undertaken in the GAB in recent years. Namely;</div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;Ground surface movement in the northern Surat Basin derived from campaign GPS measurements. (Garthwaite et al., 2022).</div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;InSAR processing over the Great Artesian Basin and analysis over the western Eromanga Basin and northern Surat Basin (this Record).</div><div><br></div><div>We have produced ground surface motion data products, which cover about 90% of the GAB for the period of time between January 2016 and August 2020. The data products were created using Sentinel-1 Synthetic Aperture Radar (SAR) data and an InSAR processing workflow designed for large spatial scale processing. The large spatial scale InSAR processing workflow includes using GAMMA software to (i) pre-process SAR images to align the pixels, (ii) generate interferograms and short temporal baseline surface displacement maps and PyRate software to (iii) combine these outputs in an inversion to form pixel-wise time series ground surface displacement data and fit ground surface velocities to the displacement data. The raw SAR data and these subsequent data products of the workflow are partitioned into overlapping frames; the final stage of the large scale processing workflow is to combine the partitioned data into a single map using a mosaicking algorithm. The results of this processing chain demonstrate the feasibility of developing a regional scale ground surface movement reconnaissance tool (i.e. subsidence and uplift). </div><div><br></div><div>We provide a summary of the processing chain and data products and a focused assessment for two case study areas in the western Eromanga Basin (South Australia) and northern Surat Basin (Queensland). Over these case study areas we examine the relationship between the InSAR derived ground surface movement and available groundwater level data. We also assess how land use types may influence the InSAR derived ground surface motion data by comparing the InSAR data to the “land types” over the region which we classify using a machine learning algorithm with Sentinel-2 optical imagery data. </div><div><br></div><div>From our analysis we observe little ground surface motion over the western Eromanga Basin. The surface movement rate over the entire area is estimated to be mostly within ±10 mm/yr. Groundwater level time series data from well monitoring sites in the area did not appear to have any significant trends either. However, large and broad scale ground surface motion (both uplift and subsidence) was observed in the InSAR processing results over the northern Surat Basin. A 75 km x 150 km scale uplift signal, with rates of up to 20 mm/yr, was located over an area we classified as cultivated land, where InSAR signals are likely to be influenced by near-surface cultivation activities (such as irrigation) rather than subsurface groundwater level changes. Furthermore, two approximately 75km x 75 km areas were identified which had subsidence signals of up to -20 mm/yr. Over the same area, groundwater level time series data show long-term negative trends in the water head level. For a more direct comparison between the InSAR results and the well data, we fitted a first order poroelastic model to transform the InSAR derived ground surface motion rates into modelled pore-pressure decline/groundwater drawdown rates. We compared the model to the groundwater time series data in the Walloon Coal Measures, Surat Basin, and found good agreement, which indicates that the observed subsidence signals could be attributable to pore-pressure decline due to the falling water head level.</div><div><br></div><div>We finally provide some preliminary analysis comparing our InSAR results to the results from an Office of Groundwater Impact Assessment (OGIA) InSAR study and a Geoscience Australia GPS land movement study to assist in validating the Geoscience Australia InSAR results. Overall, the comparisons are encouraging, showing a high correlation against the OGIA InSAR results and GPS results. Further work, is required to further validate our results and reduce uncertainty in our analysis process.</div>

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Eromanga Basin aquifers in the Adavale Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods used to derive these data for all Eromanga Basin aquifers in the Adavale Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Gouramanis et al., 2023). The Eromanga Basin overlying the Adavale Basin includes 5 broadly defined aquifer intervals: from deepest to shallowest, these are the Poolowanna, Hutton, Adori, Cadna-owie–Hooray and Winton-Mackunda aquifers. Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.

  • <div>We have investigated whether water-saturated residual oil zones (ROZs), sometimes associated with conventional Australian hydrocarbon plays, could provide a CO2 storage resource and supplement depleted field storage. Our petrophysical study demonstrates that ROZs occur in Australia’s hydrocarbon-rich regions, particularly in the Cooper-Eromanga Basin. ROZs with more than 10% residual oil saturation are uncommon, likely due to small original oil columns and lower residual saturations retained in sandstone reservoirs than in classic, carbonate-hosted North American ROZs. Extensive, reservoir-quality rock is found below the deepest occurring conventional oil in many of the fields in the Eromanga Basin, potentially offering significant CO2 storage capacity. Multiphase compositional flow modelling was used to estimate the CO2 storage efficiency of typical Australian ROZs. We developed a novel modelling methodology that first captures oil migration events leading to the formation of ROZs. Modelling CO2 storage over a 20-year injection period demonstrates that CO2-oil interactions increase the density and viscosity of CO2, enhancing CO2 sweep efficiency and lateral flow, improving storage efficiency. The extent of these effects depends on the quantity and spatial distribution of residual oil in place and the miscibility of CO2 at reservoir conditions. Presented at the Australian Energy Producers (AEP) Conference & Exhibition (https://energyproducersconference.au/conference/)

  • <div>This document provides metadata for the gross depositional environment (GDE) interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project.&nbsp;&nbsp;</div><div>The AFER projects is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf.&nbsp;</div><div>The GDE data sets provide high level classifications of interpreted environments where sediments were deposited within each defined play interval in the Pedirka, Simpson and Western Eromanga basins. Twelve gross depositional environments have been interpreted and mapped in the study (Table 1). A total of 14 play intervals have been defined for the Pedirka, Simpson and Western Eromanga basins by Bradshaw et al. (2022, in press), which represent the main chronostratigraphic units separated by unconformities or flooding surfaces generated during major tectonic or global sea level events (Figure 1). These play intervals define regionally significant reservoirs for hydrocarbon accumulations or CO2 geological storage intervals, and often also include an associated intraformational or regional seal.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</div><div>GDE interpretations are a key data set for play-based resources assessments in helping to constrain reservoir presence. The GDE maps also provide zero edges showing the interpreted maximum extent of each play interval, which is essential information for play-based resource assessments, and for constructing accurate depth and thickness grids.&nbsp;&nbsp;</div><div>GDE interpretations for the AFER Project are based on integrated interpretations of well log and seismic data, together with any supporting palynological data. Some play intervals also have surface exposures within the study area which can provide additional published paleo-environmental data. The Pedirka, Simpson and Western Eromanga basins are underexplored and contain a relatively sparse interpreted data set of 42 wells and 233 seismic lines (Figure 2). Well and outcrop data provide the primary controls on paleo-environment interpretations, while seismic interpretations constrain the interpreted zero edges for each play interval. The sparse nature of seismic and well data in the study area means there is some uncertainty in the extents of the mapped GDE’s.&nbsp;&nbsp;</div><div>The data package includes the following datasets:&nbsp;&nbsp;</div><div>Play interval tops for each of the 42 wells interpreted – provided as an ‘xlsx’ file.&nbsp;</div><div>A point file (AFER_Wells_GDE) capturing the GDE interpretation for each of the 14 play intervals in each of the 42 wells – provided as both a shapefile and within the AFER_GDE_Maps geodatabase.&nbsp;</div><div>Gross depositional environment maps for each of the 14 play intervals (note that separate GDE maps have been generated for the Namur Sandstone and Murta Formation within the Namur-Murta play interval, and for the Adori Sandstone and Westbourne Formation within the Adori-Westbourne play interval) – provided as both shapefiles and within the AFER_GDE_Maps geodatabase.&nbsp;</div><div>&nbsp;</div><div>These GDE data sets are being used to support the AFER Project’s play-based energy resource assessments in the Western Eromanga, Pedirka and Simpson basins.&nbsp;</div><div><br></div>