CO2 capture
Type of resources
Keywords
Publication year
Scale
Topics
-
This is a 3 minute movie (with production music), to be played in the background during the October 28th 2010 Geoscience Australia Parlimentary Breakfast. The video shows a wide range of the types of activities that GA is involved in. These images include GA people doing GA activities as well as some of the results of offshore surveys; continental mapping; eath monitoring etc. The movie will be played as a background before and after GA's CEO (Chris Pigram) presentation.
-
There remains considerable uncertainty regarding the location, timing and availability of CO2 storage sites in both southeast Queensland and New South Wales. In New South Wales, the main issues relate to the lack of recent or reliable valid geological information that would permit a complete and comprehensive evaluation. Some sedimentary basins appear to contain potential storage reservoirs although they have low permeabilities, and are therefore likely to have low injection rates. In southeast Queensland, recent work has indicated that in some parts of the Bowen and Surat basins CO2 storage is likely to compete with other resources such as groundwater and hydrocarbons. However, current research on the potential storage in deeper saline formations in the southern and western Bowen Basin has provided encouraging results. Storage in deeper stratigraphic units in the central western part of the basin will rely on injection in low permeability formations, and more correlation work is required to define generally narrow storage targets. The Wunger Ridge, in the southern Bowen Basin, however, has promise with both significant storage potential and relatively low geological risk. One area in which there is some potential in both New South Wales and southeast Queensland is CO2 storage in coal seams, as close technical and economic relationships exist between coal bed methane (CBM) field development and operations and CO2 storage. Substantial collaborative research is still required in this area and is currently a focus of the CO2CRC activities
-
Initial 2D seismic survey using mini-vibroseis with high frequency band 10 - 150Hz. This seismic survey is part of the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) projects.
-
The greater Eromanga Basin is an intracratonic Mesozoic basin covering an area approximately 2,000,000 km2 in central and eastern Australia. The greater Eromanga Basin encompasses three correlated basins: the Eromanga Basin (central and western regions), Surat Basin (eastern region) and the Carpentaria Basin (northern region). The greater Eromanga Basin hosts Australia's largest known reserves of groundwater and onshore hydrocarbons and also contains extensive geothermal and uranium systems. The basin has also demonstrated potential as a greenhouse gas sequestration site and will likely play an intrinsic role in securing Australia's energy future. A 3D geological map has been constructed for the greater Eromanga Basin using publicly available datasets. These are principally compiled drilling datasets (i.e. water bores; mineral and petroleum exploration wells) and 1:1,000,000 scale surface geology map of Australia. Geophysical wireline logs, hydrochemistry and radiometrics datasets were also integrated into the 3D geological map
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset has analysis of Chlorin and geochemmistry for samples taken on survey.
-
We present a probabilistic tectonic hazard analysis of a site in the Otway Basin,Victoria, Australia, as part of the CO2CRC Otway Project for CO2 storage risk. The study involves estimating the likelihood of future strong earthquake shaking and associated fault displacements from natural tectonic processes that could adversely impact the storage process at the site. Three datasets are used to quantify the tectonic hazards at the site: (1) active faults; (2) historical seismicity, and; (3) GPS surface velocities. Our analysis of GPS data reveals strain rates at the limit of detectability and not significantly different from zero. Consequently, we do not develop a GPS-based source model for this Otway Basin model. We construct logic trees to capture epistemic uncertainty in both the fault and seismicity source parameters, and in the ground motion prediction. A new feature for seismic hazard modelling in Australia, and rarely dealt with in low-seismicity regions elsewhere, is the treatment of fault episodicity (long-term activity versus inactivity) in the Otway model. Seismic hazard curves for the combined (fault and distributed seismicity) source model show that hazard is generally low, with peak ground acceleration estimates of less than 0.1g at annual probabilities of 10-3-10-4/yr. The annual probability for tectonic displacements of greater than or equal to 1m at the site is even lower, in the vicinity of 10-8-10-9/yr. The low hazard is consistent with the intraplate tectonic setting of the region, and unlikely to pose a significant hazard for CO2 containment and infrastructure.
-
The CO2CRC Otway Project in southwestern Victoria is the Australian flagship for geological storage of CO2. Phase 1 of the project involved the injection of a CO2-rich supercritical fluid into a depleted natural gas field at a depth of ~2 km. The project reached a major milestone late last year with the cessation of injection and the emplacement of around 65,000 tonnes of the supercritical fluid. Phase 2 of the project is set to commence in early 2011 with the injection a few 100 tonnes of pure CO2 into a saline aquifer at ~1.5 km depth. Critical to the project was the drilling of the CRC-1 and CRC-2 wells, with both being used as injection wells. During drilling of each well, fluorescein dye was added to the drilling mud with the intention to maintain a concentration of 5 ppm w/v. The role of fluorescein was to 1) quantitated the degree of drilling fluid contamination that may accompany autochonthous formation waters recovered with the multiple dynamic testing (MDT) tool, and 2) provide a measure of the depth of drilling mud penetration into the recovered cores in order to provide pristine material for microbiological studies.
-
This is a 5.48 minute long movie demonstrating Carbon Capture Technologies as one of the range of solutions that can help reduce greenhouse gas emissions. Using 3D Max animation we show how carbon dioxide is captured at the source of emissions (coal fired power stations for example), and permanently storing them deep underground. The movie has professional narration explaining the story, throughout.
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This 10 sample data-set comprises specific surface area and bulk (%) carbonate data from surface seabed sediments (~0-2 cm) in the Timor Sea.
-
The GEODISC Geographic Information System (GIS) Overview and Demonstration With the understanding that "better information leads to better decisions", Geoscience Australia has produced a Geographic Information System (GIS) that showcases the research completed within Projects 1, 2, and 8 of the GEODISC Program (Geological CO2 storage program in the Australian Petroleum Cooperative Research Centre, 1999-2003). The GIS is an interactive archive of Australia-wide regional analysis of CO2 sources and storage potential, incorporating economic modelling (Projects 1 and 8), as well as four site specific studies of the Dongara Gas field, Carnarvon Basin, Petrel Sub-basin and Gippsland Basin (Project 2). One of the major objectives of a collaborative research program such as GEODISC is to share results and knowledge with clients and fellow researchers, as well as to be able to rapidly access and utilise the research in future technical and policy decisions. With this in mind, the GIS is designed as a complete product, with a user-friendly interface developed with mainstream software to maximise accessibility to stakeholders. It combines tabular results, reports, models, maps, and images from various geoscientific disciplines involved in the geological modelling of the GEODISC site specific studies (ie geochemistry, geomechanics, reservoir simulations, stratigraphy, and geophysics) into one media. The GEODISC GIS is not just an automated display system, but a tool used to query, analyse, and map data in support of the decision making process. It allows the user to overlay different themes and facilitates cross-correlation between many spatially-related data sources. There is a vast difference between seeing data in a table of rows and columns and seeing it presented in the form of a map. For example, tabular results such as salinity data, temperature information and pressure tests, have been displayed as point data linked to well locations. These, in turn, have been superimposed on geophysical maps and images, to enable a better understanding of spatial relationships between features of a potential CO2 injection site. The display of such information allows the instant visualisation of complex concepts associated with site characterisation. In addition, the GEODISC GIS provides a tool for users to interrogate data and perform basic modelling functions. Economic modelling results have been incorporated into the regional study so that simple calculations of source to sink matching can be investigated. The user is also able to design unique views to meet individual needs. Digital and hardcopy map products can then be created on demand, centred on any location, at any scale, and showing selected information symbolised effectively to highlight specific characteristics. A demonstration of the GIS product will illustrate all of these capabilities as well as give examples of how site selection for CO2 sources and storage locations might be made.