hydrochemistry
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This report presents a summary of the groundwater hydrochemistry data release from the Ti Tree project conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This data release records the groundwater sample collection methods and hydrochemistry and isotope data from monitoring bores in the Alice Springs project area, Northern Territory (NT). The Ti Tree project is a collaborative study between Geoscience Australia and the NT Government. Hydrochemistry and isotope data were collected from existing and newly drilled bores in the Ti Tree area
-
This report presents a summary of the groundwater hydrochemistry data release from the Western Davenport project conducted as part of Exploring for the Future (EFTF). This data release records the groundwater sample collection methods and hydrochemistry and isotope data from monitoring bores in the Western Davenport project area, Northern Territory (NT). The Western Davenport project is a collaborative study between Geoscience Australia and the NT Government. Hydrochemistry and isotope data were collected from existing and newly drilled bores in the Western Davenport area.
-
This report presents a summary of the groundwater and surface water hydrochemistry data release from the East Kimberley project conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This data release records the groundwater and surface water sample collection methods and hydrochemistry and isotope data from monitoring bores in the East Kimberley project, Northern Territory (NT). The East Kimberley project incorporates the area around the Keep River Plains near the western border of the NT. Hydrochemistry data was collected from existing and newly drilled bores in the Keep River Plains area. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report. Hydrochemistry data are available for download from https://pid.geoscience.gov.au/dataset/ga/100521.
-
This service provides access to hydrochemistry data (groundwater and surface water analyses) obtained from water samples collected from Australian water bores or field sites.
-
This service provides access to hydrochemistry data (groundwater and surface water analyses) obtained from water samples collected from Australian water bores or field sites.
-
This report presents key results from hydrogeological investigations in the Tennant Creek region, completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The EFTF Southern Stuart Corridor (SSC) Project area is located in the Northern Territory and extends in a north–south corridor from Tennant Creek to Alice Springs, encompassing four water control districts and a number of remote communities. Water allocation planning and agricultural expansion in the SSC is limited by a paucity of data and information regarding the volume and extent of groundwater resources and groundwater systems more generally. Geoscience Australia, in partnership with the Northern Territory Department of Environment and Natural Resources and Power and Water Corporation, undertook an extensive program of hydrogeological investigations in the SSC Project area between 2017 and 2019. Data acquisition included; helicopter airborne electromagnetic (AEM) and magnetic data; water bore drilling; ground-based and downhole geophysical data for mapping water content and defining geological formations; hydrochemistry for characterising groundwater systems; and landscape assessment to identify potential managed aquifer recharge (MAR) targets. This report focuses on the Tennant Creek region—part of the Barkly region of the Northern Territory. Investigations in this region utilised existing geological and geophysical data and information, which were applied in the interpretation and integration of AEM and ground-based geophysical data, as well as existing and newly acquired groundwater hydrochemical and isotope data. The AEM and borehole lithological data reveal the highly weathered (decomposed) nature of the geology, which is reflected in the hydrochemistry. These data offer revised parameters, such as lower bulk electrical conductivity values and increased potential aquifer volumes, for improved modelling of local groundwater systems. In many instances the groundwater is shown to be young and of relatively good quality (salinity generally <1000 mg/L total dissolved solids), with evidence that parts of the system are rapidly recharged by large rainfall events. The exception to this is in the Wiso Basin to the west of Tennant Creek. Here lower quality groundwater occurs extensively in the upper 100 m below ground level, but this may sit above potentially potable groundwater and that possibility should be investigated further. Faults are demonstrated to have significantly influenced the occurrence and distribution of weathered rocks and of groundwater, with implications for groundwater storage and movement. Previously unrecognised faults in the existing borefield areas should be investigated for their potential role in compartmentalising groundwater. Additionally a previously unrecognised sub-basin proximal to Tennant Creek may have potential as a groundwater resource or a target for MAR. This study has improved understanding of the quantity and character of existing groundwater resources in the region and identified a managed aquifer recharge target and potential new groundwater resources. The outcomes of the study support informed water management decisions and improved water security for communities; providing a basis for future economic investment and protection of environmental and cultural values in the Tennant Creek and broader Barkly region. Data and information related to the project are summarised in the conclusions of this report and are accessible via the EFTF portal (https://portal.ga.gov.au/).
-
<div>This data package is a key output from the integrated, basin-scale hydrogeological assessment of South Nicholson-Georgina as part of Geoscience Australia’s National Groundwater Systems project in the Exploring for the Future program. This comprehensive desktop study has integrated numerous geoscience and hydrogeological datasets to develop a new whole-of-basin conceptualisation of groundwater flow systems and recharge and discharge processes within the regional unconfined aquifers of the Georgina Basin.</div><div><br></div><div>This data release includes an ESRI geodatabase and ESRI shapefiles with associated layer files:</div><div>- Georgina Basin watertable trend surface</div><div>- Georgina Basin reduced standing water level (RSWL) contours</div><div>- Regional scale groundwater divides</div><div>- Groundwater flow paths</div><div>- Bores with aquifer attribution and water level information where available</div><div>- Hydrochemistry data for bores and springs, and aquifer attribution (where available)</div><div>- Basin boundary extents</div><div><br></div><div>For more information and detail on these products, refer to associated report, Dixon-Jain et al. (2024).</div><div><br></div><div>Dixon-Jain, P., Bishop, C., Lester, J., Orlov, C., McPherson, A., Pho, G., Flower, C., Kilgour, P., Lawson, S., Vizy, J., Lewis, S. 2024. Hydrogeology and groundwater systems of the South Nicholson and Georgina basins, Northern Territory and Queensland. Record 2024/37. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/149730</div>
-
This document contains metadata for the hydrodynamics products produced by the Great Artesian Basin Water Resource Assessment
-
Geoscience Australia and its predecessors have analysed hydrochemistry of water sampled from boreholes (both pore water and groundwater), surface features, and rainwater. Sampling was undertaken during drilling or monitoring projects, and this dataset represents a significant subset of stored analyses. Water chemistry including isotopic data is essential to better understand groundwater origins, ages and dynamics, processes such as recharge and inter-aquifer connectivity and for informing conceptual and numerical groundwater models. This GA dataset underpins a nationally consistent data delivery tool and web-based mapping to visualise, analyse and download groundwater chemistry and environmental isotope data. This dataset is a spatially-enabled groundwater hydrochemistry database based on hydrochemistry data from projects completed in Geoscience Australia. The database includes information on physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, nutrients, pesticides, isotopes and organic chemicals. Basic calculations for piper plots colours are derived from Peeters, 2013 - A Background Color Scheme for Piper Plots to Spatially Visualize Hydrochemical Patterns - Groundwater, Volume 52(1) <https://doi.org/10.1111/gwat.12118>. Upon loading the data to the database, all hydrochemistry data are assessed for reliability using Quality Assurance/Quality Control procedures and all datasets were standardised. This data is made accessible with open geospatial consortium (OGC) web services and is discoverable via the Geoscience Australia Portal (<a href="https://portal.ga.gov.au/">https://portal.ga.gov.au/</a>). This dataset is published with the permission of the CEO, Geoscience Australia.
-
<div>As part of the $225 million Exploring for the Future programme, Geoscience Australia have undertaken an investigation into the resource potential of the Officer-Musgrave-Birrindudu region. Part of this project focusses on characterising palaeovalley groundwater resources within the West Musgrave region of Australia. This GA Record is a technical report detailing the science undertaken as part of the Musgrave Palaeovalley groundwater project. The project aimed to improve understanding of the region's palaeovalley architecture, groundwater quality, and overall hydrogeology to support responsible water resource management. The most significant work undertaken included three-dimensional modelling of palaeovalley architecture, groundwater characterisation using hydrochemistry, groundwater model conceptualisation and a detailed review of local groundwater around remote communities in the region. This work will underpin responsible groundwater management into the future.</div>