digital elevation data
Type of resources
Keywords
Publication year
Scale
Topics
-
The 3 second (~90m) Shuttle Radar Topographic Mission (SRTM) derived Digital Surface Model (DSM) Version 1.0 was derived from resampling the 1 arc second (~30m) gridded DSM (ANZCW0703013336) that represents ground surface topography as well as features above the ground such as vegetation and man-made structures. The 1 second DSM was derived from the SRTM data acquired in February 2000, supported by the GEODATA 9 second DEM in void areas and the SRTM Water Body Data. Stripes and voids have been removed from the 1 second SRTM data to provide an enhanced and complete DSM for Australia and near-shore islands. A full description of the methods is in progress (Read et al., in prep). The 3 second DEM was produced for use by government and the public under Creative Commons attribution. Further information can be found in the User Guide. The 1 second DSM forms the source for the 1 second DEM with vegetation offsets removed (ANZCW0703013355) and the smoothed version (ANZCW0703014016). All 1 second products resampled to 3 seconds are available (DSM; ANZCW0703014216, DEM; ANZCW0703014182, DEM-S; ANZCW0703014217). <strong>Please note that all 1 second products are available for GOVERNMENT USERS ONLY.</strong>
-
The Harvey 2008 LiDAR data was captured over the Harvey region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.
-
Data was collected by selecting the highest point(s) in each geographical area of 30 minutes of latitude by 30 minutes of longitude. Elevations are recorded in feet and metres (always rounded up). Information is derived from 1:1 Million scale World Aeronautical Charts. Note: This is not regularly gridded data.
-
The Perth 2008 LiDAR data was captured over the Perth region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.
-
SRTM Documentation (best viewed with mono-spaced font, such as courier) 1.0 Introduction The SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Imagery and Mapping Agency (NIMA), as well as the participation of the German and Italian space agencies, to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. The SRTM instrument consisted of the Spaceborne Imaging Radar-C (SIR-C) hardware set modified with a Space Station-derived mast and additional antennae to form an interferometer with a 60 meter long baseline. A description of the SRTM mission, can be found in Farr and Kobrick (2000). Synthetic aperture radars are side-looking instruments and acquire data along continuous swaths. The SRTM swaths extended from about 30 degrees off-nadir to about 58 degrees off-nadir from an altitude of 233 km, and thus were about 225 km wide. During the data flight the instrument was operated at all times the orbiter was over land and about 1000 individual swaths were acquired over the ten days of mapping operations. Length of the acquired swaths range from a few hundred to several thousand km. Each individual data acquisition is referred to as a "data take." SRTM was the primary (and pretty much only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days. Following several hours for instrument deployment, activation and checkout, systematic interferometric data were collected for 222.4 consecutive hours. The instrument operated virtually flawlessly and imaged 99.96% of the targeted landmass at least one time, 94.59% at least twice and about 50% at least three or more times. The goal was to image each terrain segment at least twice from different angles (on ascending, or north-going, and descending orbit passes) to fill in areas shadowed from the radar beam by terrain. This 'targeted landmass' consisted of all land between 56 degrees south and 60 degrees north latitude, which comprises almost exactly 80% of the total landmass.
-
The 3 second (~90m) Smoothed Digital Elevation Model (DEM-S) Version 1.0 was derived from resampling the 1 second SRTM derived DEM-S (gridded smoothed digital elevation model; ANZCW0703014016). The DEM represents ground surface topography, excluding vegetation features, and has been smoothed to reduce noise and improve the representation of surface shape. The DEM-S was derived from the 1 second Digital Surface Model (DSM; ANZCW0703013336) and the Digital Elevation Model Version 1.0 (DEM; ANZCW0703013355) by an adaptive smoothing process that applies more smoothing in flatter areas than hilly areas, and more smoothing in noisier areas than in less noisy areas. This DEM-S supports calculation of local terrain shape attributes such as slope, aspect and curvatures that could not be reliably derived from the unsmoothed 1 second DEM because of noise. A full description of the methods is in progress (Gallant et al., in prep) and in the 1 second User Guide. The 3 second DEM was produced for use by government and the public under Creative Commons attribution. The 1 second DSM and DEM that forms the basis of the product are also available as 3 second products (DSM; ANZCW0703014216, DEM; ANZCW0703014182, DEM-S; ANZCW0703014217). <strong>Please note that all 1 second products are available for GOVERNMENT USERS ONLY.</strong>
-
The Swan Coast hydrologically enforced digital elevation model (HDEM) was produced in 2010 as part of the Urban DEM project managed by the CRC for Spatial Information and Geoscience Australia. The HDEM was created from a combination of the following surveys; Perth, Peel, Harvey, Bunbury and Busselton LiDAR The Swan Coast 2008 LiDAR data was captured over the Swan Coast region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The HDEM was produced by SKM using the ANUDEM program. The HDEM ensures that primary stream/channel flow, and water flow across the land surface are accurately represented. The hydrologically enforced HDEM depicts water bodies as being flat, and water courses depict consistent downward flow of water unimpeded by vegetation or man-made structures such as bridges and major culverts. Drainage enforcement was limited to watercourse lines depicted on 1:25,000 topographic mapping and to the intersection of the water course layer and transport layer. For the purposes of inundation modelling, inundation contours have been developed using the HDEM. The inundation extents were extracted at 0.2m intervals below 2m AHD and 1m intervals up to 10m. The inundation contours are available as polylines. The inundation contours have also been flagged as to whether the area connects directly to the sea. he data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing.
-
Tsunami inundation models are computationally intensive and require high resolution elevation data in the nearshore and coastal environment. In general this limits their practical application to scenario assessments at discrete communiteis. This study explores teh use of moderate resolution (250 m) bathymetry data to support computationally cheaper modelling to assess nearshore tsunami hazard. Comparison with high ersolution models using best available elevation data demonstrates that moderate resolution models are valid (errors in waveheight < 20%) at depths greater than 10m in areas of relatively low sloping, uniform shelf environments. However in steeper and more complex shelf environments they are only valid at depths of 20 m or greater. Modelled arrival times show much less sensitivity to data resolution compared with wave heights and current velocities. It is demonstrated that modelling using 250 m resoltuion data can be useful in assisting emergency managers and planners to prioritse communities for more detailed inundation modelling by reducing uncertainty surrounding the effects of shelf morphology on tsunami propagaion. However, it is not valid for modelling tsunami inundation. Further research is needed to define minimum elevation data requirements for modelling inundation and inform decisions to undertake acquisition of high quality elevaiton data collection.
-
This record has been created for Sales to be able to invoice data requests that occur from downloading of data from the National Elevation Data Framework (NEDF) Web Portal. The Portal was set up in 2010 and data more than 400MB needs to be downloaded from the holding pen on the NEDF server and copied onto media and sent to the requester. Each data request will come with metadata and the appropriate data licence.
-
Elevation data and products such as Digital Elevation Models derived from these data comprise an essential layer within the National Spatial Data Infrastructure. Historically the creation of these datasets has been the domain of National and State mapping agencies. However, in recent years the rapid development of survey technologies and industry capability, the need for high resolution elevation data to meet a range of purposes, and the nature of government funding arrangements has resulted in significant project-based investment.