From 1 - 10 / 31
  • The Proterozoic alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Proterozoic age.

  • This record presents a data compilation and thematic maps for existing U–Pb age data for a range of methods and minerals for an area of northern Australia. The compilation includes 2240 age results from the Northern Territory, Queensland and selected areas of South Australia, Western Australia and New South Wales. U–Pb age data was sourced from Geoscience Australia, the Northern Territory Geological Survey, the Geological Survey of Queensland, the Geological Survey of Western Australia and the published scientific literature. Thematic maps have been created from the compiled dataset and show the spatial distribution and age trends of igneous crystallisation ages, maximum depositional ages and metamorphic ages across northern Australia. This work can be used as both a standalone dataset and in conjunction with other geological, geochemical, isotopic and geophysical datasets to better understand the geological evolution of northern Australia.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia (in collaboration with the Northern Territory Geological Survey) acquired around 700 line-kms of deep crustal reflection seismic data across northwest Northern Territory encompassing not only the frontier Birrindudu Basin but adjacent highly prospective regions, such as the Tanami. This ecat record releases the final survey route shapefiles, noting that some segments were not acquired due to site access restrictions. Seismic field data will be published in the near future release following completion of in-house QA/QC protocols

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from an mineral exploration drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory This ecat record releases the final report and raw data files (*.LAS) by FIT Schlumberger. Company reference number FI230005a.

  • Zircon and xenotime U–Pb SHRIMP geochronology was conducted on samples from the South Nicholson Basin, and western Mount Isa Orogen. These samples were collected from outcrop and core from the Northern Territory and Queensland. The age data indicate the South Nicholson Basin was deposited after ca 1483 Ma but deposition most likely had ceased by ca 1266 Ma; the latter age likely represents post-diagenetic fluid flow in the area, based on U–Pb xenotime data. Geochronology presented here provides the first direct age data confirming the South Nicholson Group is broadly contemporaneous with the Roper Group of the McArthur Basin, which has identified facies with high hydrocarbon prospectivity. In addition, geochronology on the Paleoproterozoic McNamara Group provides new age constraints that have implications for the regional stratigraphy. The data obtained in this geochronological study allow for a comprehensive revision of the existing stratigraphic framework, new correlations and enhances commodity prospectivity in central northern Australia.

  • <div>This dataset presents results of a first iteration of a 3D geological model across the Georgina Basin, Beetaloo Sub-basin of the greater McArthur Basin and South Nicholson Basin (Figure 1), completed as part of Geoscience Australia’s Exploring for the Future Program National Groundwater Systems (NGS) Project. These basins are located in a poorly exposed area between the prospective Mt Isa Province in western Queensland, the Warramunga Province in the Northern Territory, and the southern McArthur Basin to the north. These surrounding regions host major base metal or gold deposits, contain units prospective for energy resources, and hold significant groundwater resources. The Georgina Basin has the greatest potential for groundwater.</div><div>&nbsp;</div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>This model builds on the work undertaken in regional projects across energy, minerals and groundwater aspects in a collection of data and interpretation completed from the first and second phases of the EFTF program. The geological and geophysical knowledge gathered for energy and minerals projects is used to refine understanding of groundwater systems in the region.</div><div>&nbsp;</div><div>In this study, we integrated interpretation of a subset of new regional-scale data, which include ~1,900 km of deep seismic reflection data and 60,000 line kilometres of AusAEM1 airborne electromagnetic survey, supplemented with stratigraphic interpretation from new drill holes undertaken as part of the National Drilling Initiative and review of legacy borehole information (Figure 2). A consistent chronostratigraphic framework (Figure 3) is used to collate the information in a 3D model allowing visualisation of stacked Cenozoic Karumba Basin, Mesozoic Carpentaria Basin, Neoproterozoic to Paleozoic Georgina Basin, Mesoproterozoic Roper Superbasin (including South Nicholson Basin and Beetaloo Sub-basin of the southern McArthur Basin), Paleoproterozoic Isa, Calvert and Leichhardt superbasins (including the pre-Mesoproterozoic stratigraphy of the southern McArthur Basin) and their potential connectivity. The 3D geological model (Figure 4) is used to inform the basin architecture that underpins groundwater conceptual models in the region, constrain aquifer attribution and groundwater flow divides. This interpretation refines a semi-continental geological framework, as input to national coverage databases and informs decision-making for exploration, groundwater resource management and resource impact assessments.</div><div><br></div><div>This metadata document is associated with a data package including:</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Nine surfaces (Table 1): 1-Digital elevation Model (Whiteway, 2009), 2-Base Cenozoic, 3-Base Mesozoic, 4-Base Neoproterozoic, 5-Base Roper Superbasin, 6-Base Isa Superbasin, 7-Base Calvert Superbasin, 8-Base Leichhardt Superbasin and 9-Basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Eight isochores (Table 4): 1-Cenozoic sediments (Karumba Basin), 2-Mesozoic sediments (Carpentaria and Eromanga basins), 3-Paleozoic and Neoproterozoic sediments (Georgina Basin), 4-Mesoproterozoic sediments (Roper Superbasin including South Nicholson Basin and Beetaloo Sub-basin), 5-Paleoproterozoic Isa Superbasin, 6-Paleoproterozoic Calvert Superbasin, 7-Paleoproterozoic Leichhardt Superbasin and 8-Undifferentiated Paleoproterozoic above basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Five confidence maps (Table 5) on the following stratigraphic surfaces: 1-Base Cenozoic sediments, 2-Base Mesozoic, 3-Base Neoproterozoic, 4-Base Roper Superbasin and 5-Combination of Base Isa Superbasin/Base Calvert Superbasin/Base Leichhardt Superbasin/Basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Three section examples (Figure 4) with associated locations.</div><div>Two videos showing section profiles through the model in E-W and N-S orientation.</div>

  • Presentation from the Exploring for the Future Roadshow on the Energy prospectivity of the South Nicholson region, regional geochemical data acquisition and shale gas prospectivity analysis.

  • The Exploring for the Future Program (EFTF) is a $100.5 million four year, federally funded initiative to better characterise the mineral, energy and groundwater potential of northern Australia. As part of this initiative, this record presents new whole-rock geochemistry data from 967 samples of sedimentary rocks sampled from 26 wells in the South Nicholson region, including the Proterozoic South Nicholson Basin and Lawn Hill Platform, the Neoproterozoic to Devonian Georgina Basin and the Jurassic to Cretaceous Carpenteria Basin. This work complements other components of the EFTF program, including the South Nicholson Basin seismic survey, a comprehensive geochronology program and hydrocarbon prospectivity studies to better understand the geological evolution and basin architecture of the region, and facilitate identification of areas of unrecognised resource potential and prospectivity. The South Nicholson region, straddling north-eastern Northern Territory and north-western Queensland, arguably represents one of the least geologically understood regions of Proterozoic northern Australia. The South Nicholson region is situated between two highly prospective provinces, the greater McArthur Basin in the Northern Territory, the Lawn Hill Platform and the Mount Isa Province in Queensland, both with demonstrated hydrocarbon and base metal potential. These new geochemical data provide baseline understanding of regional resource prospectivity of sedimentary rocks in the South Nicholson region. During 2017 and 2018, 967 drill core and cuttings were sampled from 26 legacy boreholes that intersected the South Nicholson region housed in Northern Territory Geological Survey’s core repository in Darwin, the Geological Survey of Queensland’s core repository in Brisbane and Geoscience Australia’s core repository in Canberra. This data release contains the results of elemental analyses on these samples, which include X-Ray Fluorescence (XRF), Loss-On-Ignition (LOI), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for all samples, in addition to ron titration (FeO) for selected samples. The data was generated in the Inorganic Geochemistry laboratory at Geoscience Australia between 2017 and 2019 as part of the EFTF program. All data was quality controlled based on Certified Reference Material standards (CRMs) and duplicate samples analysed with each batch of samples.

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from the drillhole WLMB001B, Birrindudu Basin, located in the northwest Northern Territory.</div><div><br></div><div>This ecat record releases the final report containing the results of fluid inclusion stratigraphy, thin section and microthermometry analyses, raw data files (*.LAS) and rock descriptions by FIT Schlumberger. Company reference number FI230004a.</div>

  • <div>This dataset represents the second version of a compilation of borehole stratigraphic unit data on a national scale (Figure 1). It builds on the previous Australian Borehole Stratigraphic Units Compilation (ABSUC) Version 1.0 (Vizy &amp; Rollet, 2023a) with additional new or updated stratigraphic interpretation on key boreholes located in Figure 2. Its purpose is to consolidate and standardise publicly accessible information from boreholes, including those related to petroleum, stratigraphy, minerals, and water. This compilation encompasses data from states and territories, as well as less readily available borehole logs and interpretations of stratigraphy.</div><div>&nbsp;</div><div>This study was conducted as part of the National Groundwater Systems (NGS) Project within the Australian Government's Exploring for the Future (EFTF) program. Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>As our understanding of Australian groundwater systems expands across states and territories, including legacy data from the 1970s and recent studies, it becomes evident that there is significant geological complexity and spatial variability in stratigraphic and hydrostratigraphic units nationwide. Recognising this complexity, there is a need to standardise diverse datasets, including borehole location and elevation, as well as variations in depth and nomenclature of stratigraphic picks. This standardisation aims to create a consistent, continent-wide stratigraphic framework for better understanding groundwater system for effective long-term water resource management and integrated resource assessments.</div><div>&nbsp;</div><div>This continental-scale compilation consolidates borehole data from 53 sources, refining 1,117,693 formation picks to 1,010,483 unique records from 171,396 boreholes across Australia. It provides a consistent framework for interpreting various datasets, enhancing 3D aquifer geometry and connectivity. Each data source's reliability is weighted, prioritising the most confident interpretations. Geological units conform to the Australian Stratigraphic Units Database (ASUD) for efficient updates. Regular updates are necessary to accommodate evolving information. Borehole surveys and dip measurements are excluded. As a result, stratigraphic picks are not adjusted for deviation, potentially impacting true vertical depth in deviated boreholes.</div><div>&nbsp;</div><div>This dataset provides:</div><div>ABSUC_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Australian stratigraphic unit compilation dataset (ABSUC)</div><div>ABSUC_v2_TOP&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred top picks from the ABSUC_v2 dataset</div><div>ABSUC_v2_BASE&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred base picks from the ABSUC_v2 dataset</div><div>ABSUC_BOREHOLE_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ABSUC Borehole collar dataset</div><div>ASUD_2023&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of the Australia Stratigraphic Units Database (ASUD)</div><div>&nbsp;</div><div>Utilising this uniform compilation of stratigraphic units, enhancements have been made to the geological and hydrogeological surfaces of the Great Artesian Basin, Lake Eyre Basin and Centralian Superbasin. This compilation is instrumental in mapping various regional groundwater systems and other resources throughout the continent. Furthermore, it offers a standardised approach to mapping regional geology, providing a consistent foundation for comprehensive resource impact assessments.</div>