From 1 - 10 / 42
  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.&nbsp;&nbsp;Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>The Proterozoic Birrindudu Basin is an underexplored region that contains sparse geological data. Strata of similar age are highly prospective to the east, in the McArthur and South Nicholson basins and the Mount Isa region. To investigate this underexplored and data-poor region, the L214 Northwest Northern Territory Seismic Survey was acquired in August to September 2023 by GA and co-funded by the Northern Territory Government. Prior to this survey the region contained minimal seismic data. To complement the acquisition of the seismic survey, a sampling program of legacy stratigraphic and mineral exploration drill holes was also undertaken.</div><div><br></div><div>The new sampling program and seismic reflection data acquired over the Birrindudu Basin and its flanks, has identified many areas of exploration opportunity. This has almost tripled seismic coverage over the Birrindudu Basin, which has enabled new perspectives to be gained on its geology and relationship to surrounding regions. The new seismic has shown an increase in the extent of the Birrindudu Basin, revealing the presence of extensive concealed Birrindudu Basin sedimentary sequences and major, well preserved depocentres. In the central Birrindudu Basin and Tanami Region, shallow basement and deep-seated faults are encouraging for mineralisation, as these structures have the potential to focus mineralised fluids to the near surface. The clear presence of shallow Tanami Region rocks underlying the southern Birrindudu Basin sequences at the northern end of line 23GA-NT2 extends the mineral resource potential of the Tanami Region further north into the southern Birrindudu Basin. A new minimum age of 1822±7 Ma for the deposition of metasediments in drill hole LBD2 for rocks underlying the central Birrindudu Basin, extends the age-equivalent mineral-rich basement rocks of the Tanami Region north into the central Birrindudu Basin – extending the mineral resource potential into a new region.</div><div><br></div><div>The continuous stratigraphy imaged of the Birrindudu Basin by the new seismic is encouraging for energy prospectivity, as the system elements needed for an effective petroleum system, better defined by the new sampling program results, have been imaged to extend over a wider and deeper area. New organic petrological analysis and reflectance data indicate the sampled sections have reached thermal maturity suitable for hydrocarbon generation. Oil inclusion analyses provide evidence for oil generation and migration, and hence elements of a petroleum system are present in the central and northwestern Birrindudu Basin. With the expanded breadth of these rocks demonstrated on the seismic, this greatly increases the spatial extent of hydrocarbon prospectivity in Birrindudu Basin.</div>

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from an mineral exploration drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory This ecat record releases the final report and raw data files (*.LAS) by FIT Schlumberger. Company reference number FI230005a.

  • <div>This report presents new data from X-ray Computerised Tomography (XCT) scanning, gas porosity and permeability testing, and grain density measurements of 79 of 82 samples from the Birrindudu and McArthur basins. Three plugs could not be recovered from the whole core section. Plugs were taken from depths of interest from drill holes Manbulloo S1, Hidden Valley S2, Broughton 1, ANT003, 99VRNTGSDD1, 99VRNTGSDD2, Lamont Pass 3 and WLMB001B.</div><div><br></div><div>These tests were performed in 2023 by CSIRO in Perth. The full results as provided by CSIRO to Geoscience Australia are provided as an attachment to this document.&nbsp;This work was conducted as part of the Exploring for the Future Program (Officer–Musgrave–Birrindudu module).</div><div><br></div>

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from the drillhole WLMB001B, Birrindudu Basin, located in the northwest Northern Territory.</div><div><br></div><div>This ecat record releases the final report containing the results of fluid inclusion stratigraphy, thin section and microthermometry analyses, raw data files (*.LAS) and rock descriptions by FIT Schlumberger. Company reference number FI230004a.</div>

  • <div>This report presents seal capacity results of nine samples from the Birrindudu and McArthur basins, Northern Territory. Plugs were taken from depths of interest from drill holes Manbulloo S1, Broughton 1, Lamont Pass 3, 99VRNTGSDD1 and WLMB001B. These plugs were analysed via mercury injection capillary pressure testing. This work was conducted by CSIRO under contract to GA as part of the Exploring for the Future program (Officer–Musgrave–Birrindudu Module).</div>

  • The Officer Basin spanning South Australia and Western Australia is the focus of a regional stratigraphic study being undertaken as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to increasing investment in resource exploration in Australia. Despite numerous demonstrated oil and gas shows, the Officer Basin remains a frontier basin for energy exploration with significant uncertainties due to data availability. Under the EFTF Officer-Musgrave Project, Geoscience Australia acquired new geomechanical rock property data from forty core samples in five legacy stratigraphic and petroleum exploration wells that intersected Paleozoic and Neoproterozoic aged intervals. These samples were subjected to unconfined compressive rock strength tests, Brazilian tensile strength tests and laboratory ultrasonic measurements. Petrophysical properties were also characterised via X-ray computerised tomography scanning, grain density and porosity-permeability analysis. Accurate characterisation of static geomechanical rock properties through laboratory testing is essential. In the modern exploration environment, these datasets are a precompetitive resource that can simplify investment decisions in prospective frontier regions such as the Officer Basin. Appeared in The APPEA Journal 62 S385-S391, 13 May 2022

  • Geoscience Australia commissioned reprocessing of selected legacy 2D seismic data in the Officer Basin in South Australia as part of the Exploring for the Future (EFTF) program. Reprocessing of these data occurred between April 2021 and August 2021. This seismic data release package contains reprocessed data from five surveys acquired between 1966 and 1987. In total it contains approximately 1425 km of industry 2D reflection seismic data comprising of 25 lines from 5 separate vintages. The seismic surveys include the Serpentine Lakes Reconnaissance Survey, 1966; the Everard Survey, 1974; the Marla Bore Survey, 1984; the Ungoolya, Giles and Marla-Byilkaoora Surveys, 1985; and the Amoco Officer Basin Survey, 1987 and cover areas within the Officer Basin in South Australia. The objective of the seismic reprocessing was to produce processed 2D land seismic reflection datasets using the latest processing techniques to improve continuity and data quality over legacy processing. In particular, the purpose of the reprocessing was to image the structure and stratigraphic architecture of the Neoproterozoic to Paleozoic Officer Basin in this area. All vintages except the 1966 Serpentine lakes survey were processed to Pre-stack Time Migration as well as Post-Stack Time Migration. The 1966 Serpentine Lakes Survey was processed only to Post-Stack Time Migration. <b>The Velseis data package is available on request from clientservices@ga.gov.au - Quote eCat# 145905</b>

  • <div>This report presents the rock strength and elastic properties, as tested on selected rock samples from the Birrindudu and McArthur basins. Testing was conducted by CSIRO Energy, under contract to Geoscience Australia. The tests produced parameters including:&nbsp;1) unconfined compressive strength (UCS), 2) stress-strain-time curves for UCS and repeat single-stage triaxial (STXL) experiments, 3) static elastic properties, Young’s modulus and Poisson’s ratio, and 4) failure envelopes (Mohr circles) for STXL tests. This work was conducted as part of the Exploring for the Future Program.</div>

  • Well and seismic correlation schemes exist for the Western Australian and South Australian parts of the Officer Basin but there are inconsistencies between the western and eastern regions. Hence, as part of the Exploring for the Future Officer-Musgrave Project, a chemostratigraphic correlation has been determined for the sedimentary fill of the Officer Basin with emphasis on Neoproterozoic to Cambrian rocks. The correlations have been developed on whole rock inorganic geochemical data obtained from the analysis of 10 study wells which span the basin from Western Australia and into South Australia. A total of 8 chemostratigraphic mega-sequences (MS) are recognised across the basin, that in turn are subdivided into a total of 24 chemostratigraphic sequences. MS1 to MS6 include the Neoproterozoic to Cambrian sedimentary rocks and are the focus of this study. The Neoproterozoic–Cambrian mega-sequences MS1 to MS4 broadly correspond to the previously defined Centralian supersequences CS1 to CS4 and provide robust well-control to the regional seismic correlations. Confidence in the correlation of these old rocks are important since they contain both potential source and reservoir rocks for petroleum generation and accumulation. MS7 is equivalent to the Permian Paterson Formation, while MS8 is equivalent to the Mesozoic section. The elemental data has also been used to elucidate aspects of the petroleum system by characterising reservoirs and identifying fine-grained siliciclastics deposited in anoxic environments which may have source potential. This work is expected to further improve geological knowledge and reduce the energy exploration risk of the Officer Basin, a key focus of this program. <b>Citation:</b> Edwards D.S., Munday S., Wang L., Riley D. & Khider K., 2022. Neoproterozoic and Cambrian chemostratigraphic mega-sequences of the Officer Basin; a regional framework to assist petroleum and mineral exploration. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146285

  • <div>The recent Musgrave Palaeovalley Project set out to map the extent and characterise the palaeovalley architecture of several of these Cenozoic features that overlie the Musgrave Province in central Australia. To effectively model the palaeovalley architecture of these features we collected approximately 20 000 line km of new Airborne Electromagnetics (AEM) and combined it with an array of existing AEM datasets, including AusAEM and high resolution mineral exploration surveys. These older surveys were reprocessed and reinverted to produce a consistent and reliable interpretation throughout. Utilising surface geology and lithology logs to constrain this data set, we mapped the interface between Cenozoic sediments and underlying pre-Cenozoic rocks, producing a continuous three-dimensional model of this boundary throughout the study area.</div><div><br></div><div>Our three-dimensional model enhances the understanding of the West Musgrave palaeovalley system, redefining palaeovalley extents, revealing previously unmapped palaeovalleys and identifying areas with significant accumulations of Cenozoic sediments. This methodology was also extremely useful for investigating palaeovalley geometry, revealing southerly flowpaths consistent with regional expectations but also highlighting areas of palaeovalley deformation where neo tectonic forces have acted to alter historical flow regimes. This deformation is likely to cause groundwater compartmentalisation, mounding or connect different aquifer units. Presented at the 2024 Australian Society of Exploration Geophysicists (ASEG) Discover Symposium