seismology
Type of resources
Keywords
Publication year
Topics
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Stations on the Australian continent receive a rich mixture of ambient seismic noise from the surrounding oceans and the numerous small earthquakes in the earthquake belts to the north in Indonesia, and east in Tonga-Kermadec, as well as more distant source zones. The noise field at a seismic station contains information about the structure in the vicinity of the site, and this can be exploited by applying an autocorrelation procedure to the continuous records. By creating stacked autocorrelograms of the ground motion at a single station, information on crust properties can be extracted in the form of a signal that includes the crustal reflection response convolved with the autocorrelation of the combined effect of source excitation and the instrument response. After applying suitable high pass filtering the reflection component can be extracted to reveal the most prominent reflectors in the lower crust, which often correspond to the reflection at the Moho. Because the reflection signal is stacked from arrivals from a wide range of slownesses, the reflection response is somewhat diffuse, but still sufficient to provide useful constraints on the local crust beneath a seismic station. Continuous vertical component records from 223 stations (permanent and temporary) across the continent have been processed using autocorrelograms of running windows 6 hours long with subsequent stacking. A distinctive pulse with a time offset between 8 and 30 s from zero is found in the autocorrelation results, with frequency content between 1.5 and 4 Hz suggesting P-wave multiples trapped in the crust. Synthetic modelling, with control of multiple phases, shows that a local Ppmp phase can be recovered with the autocorrelation approach. This approach can be used for crustal property extraction using just vertical component records, and effective results can be obtained with temporary deployments of just a few months.
-
The first RSTT model for Australia has been developed based on the Australian Seismological Reference Model (AuSREM) that was released in late 2012. The densely-gridded P and S wave distributions of the crust and upper mantle of AuSREM have been simplified and translated into the 7 layer crustal and upper mantle RSTT model. Travel times computed with this RSTT model are evaluated against travel times computed in full 3D through the AuSREM model to assess the impact of the approximations used by RSTT. Location estimates of 5 ground truth earthquakes (GT1, GT2 and GT5) using the global ak135 reference model, the RSTT model and the full 3D travel times are compared. It is found that the RSTT model can reproduce the 3D travel times fairly accurately within its distance of applicability, thereby improving location estimates compared to using a global travel time model like ak135. However the benefit of using RSTT for locating Australian earthquakes is far less than using full 3D travel times, mainly because most stations tend to be further away from the source than the distance of RSTT applicability.
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
The year was another marginally below average one with respect to the frequency and magnitude of earthquakes in Australia; there were two of magnitude 5 or more but no large earthquakes of magnitude 6 or more. It was an above average year for major earthquakes worldwide with one great earthquake of maptude M 8.2 and 16 of magnitude M 7.0 or more.
-
The Southern McArthur Basin, host to the world class McArthur River (HYC) Zn-Pb-Ag deposit, contains an unmetamorphosed, relatively undeformed Palaeoproterozoic to Mesoproterozoic succession of carbonate, siliciclastic and volcanic rocks. Seismic reflection data obtained across this basin have the potential to revolutionise our understanding of the crustal architecture in which this deposit formed. These data were collected in late 2002 as part of a study to examine the fundamental basin architecture of the Southern McArthur Basin and the nature of underlying basement. Much of the seismic program was designed to test geometric models in this area, including tectonostratigraphy, fault systems and basement structure. The results have wider applicability because the basin is considered to be a little deformed analogue of the Western Succession of Mt Isa. The main seismic line (02GA-BT1) was oriented east-west across the Southern McArthur Basin, commenced 15 km west of Borroloola, and extended about 110 km westwards along the Borroloola-Roper Bar road. A short north-south cross line (02GA-BT2), 20 km long, was acquired within the basin itself, in collaboration with AngloAmerican.
-
One of the important inputs to a probabilistic seismic hazard assessment is the expected rate at which earthquakes within the study region. The rate of earthquakes is a function of the rate at which the crust is being deformed, mostly by tectonic stresses. This paper will present two contrasting methods of estimating the strain rate at the scale of the Australian continent. The first method is based on statistically analysing the recently updated national earthquake catalogue, while the second uses a geodynamic model of the Australian plate and the forces that act upon it. For the first method, we show a couple of examples of the strain rates predicted across Australia using different statistical techniques. However no matter what method is used, the measurable seismic strain rates are typically in the range of 10-16s-1 to around 10-18s-1 depending on location. By contrast, the geodynamic model predicts a much more uniform strain rate of around 10-17s-1 across the continent. The level of uniformity of the true distribution of long term strain rate in Australia is likely to be somewhere between these two extremes. Neither estimate is consistent with the Australian plate being completely rigid and free from internal deformation (i.e. a strain rate of exactly zero). This paper will also give an overview of how this kind of work affects the national earthquake hazard map and how future high precision geodetic estimates of strain rate should help to reduce the uncertainty in this important parameter for probabilistic seismic hazard assessments.
-
The recently released ISC-GEM catalogue was a joint product of the International Seismological Center (ISC) and the Global Earthquake Model (GEM). In a major undertaking it collated, from a very wide range of sources, the surface and body wave amplitude-period pairs from the pre digital era; digital MS, mb and Mw; collated Mw values for 970 earthquakes not included in the Global CMT catalogue; used these values to determine new non-linear regression relationship between MS and Mw and mb and Mw. They also collated arrival picks, from a very wide range of sources, and used these to recompute the location, initially using the EHB location algorithm then revised using the ISC location algorithm (which primarily refined the depth). The resulting catalogues consists of 18871 events that have been relocated and assigned a direct or indirect estimate of Mw. Its completeness periods are, Ms - 7.5 since 1900, Ms - 6.25 1918 and Ms - 5.5 1960. This catalogue assigns, for the first time, an Mw estimate for several Australian earthquakes. For example the 1968 Meckering earthquake the original ML, mb and MS were 6.9, 6.1 and 6.8, with empirical estimates of Mw being 6.7 or 6.8. The ISC-GEM catalogue assigns an Mw of 6.5. We will present a poster of the Australian events in this ISC_GEM catalogue showing, where available, the original ML, mb, Ms, the recalculated mb and Ms, and the assigned Mw. We will discuss the implications of this work for significant Australian earthquakes.