landforms
Type of resources
Keywords
Publication year
Scale
Topics
-
Arcview GIS containing a regolith-landfrom map with associated site database. Most sites have a field photograph hot linked into the GIS. Complementary datasets include, digital elevation model and enhanced Landsat TM imagery.
-
The 1:250 000 maps show the type and distribution of 51 regolith-landform units with unique dominant regolith-landform associations, and are a subset of the 205 mapping units on the six 1:100 000 maps. These units are distinct patterns of recurring landform elements with characteristic regolith associations. Geomorphic symbols indicate the location and type of geomorphic activity. The maps present a systematic analysis and interpretation of 1:89 000 scale 1973 RC9 aerial photography, 1:100 000 scale topographic maps (AUSLIG), and field mapping data. High resolution (250m line spacing) airborne gamma-ray spectrometry and magnetics (Geoterrex) were used where applicable
-
The 1:250 000 maps show the type and distribution of 51 regolith-landform units with unique dominant regolith-landform associations, and are a subset of the 205 mapping units on the six 1:100 000 maps. These units are distinct patterns of recurring landform elements with characteristic regolith associations. Geomorphic symbols indicate the location and type of geomorphic activity. The maps present a systematic analysis and interpretation of 1:89 000 scale 1973 RC9 aerial photography, 1:100 000 scale topographic maps (AUSLIG), and field mapping data. High resolution (250m line spacing) airborne gamma-ray spectrometry and magnetics (Geoterrex) were used where applicable
-
This paper presents a new style of bedload parting from western Torres Strait, northern Australia. Outputs from a hydrodynamic model identified an axis of bedload parting centred on the western Torres Strait islands (~142°15"E). Unlike bedload partings described elsewhere in the literature, those in Torres Strait are generated by incoherence between two adjacent tidal regimes as opposed to overtides. Bedload parting is further complicated by the influence of wind-driven currents. During the trade wind season, wind-driven currents counter the reversing tidal currents to a point where peak currents are directed west. The eastwards-directed bedload pathway is only active during the monsoon season. Satellite imagery was used to describe six bedform facies associated with the bedload parting. Bedform morphology was used to indicate sediment supply. Contrary to bedload partings elsewhere, sand ribbons are a distal facies within the western bedload transport pathway despite peak currents directed toward the west throughout the year. This indicates that sediment is preferentially trapped within sand banks near the axis of parting and not transported further west into the Gulf of Carpentaria or Arafura Sea.
-
The Sydney Basin encloses a significant proportion of the Australian population, and the 1989 M5.6 Newcastle earthquake demonstrated that the basin is not immune from the impact of even relatively modest earthquakes. In spite of this, few investigations have been conducted to identify and characterise potential geologic sources of strong ground shaking. A recent major study of the southern part of the basin commented that - The available data are less complete than ideal for the purposes of probabilistic seismic hazard analysis. - Essentially, the extreme infrequency of large earthquake events in intraplate regions, such as Australia, means that the short historic record of seismicity is poorly suited to the task of assessing seismic hazard. Hence, geologic, geomorphic and paleoseismic knowledge has a vital role to play in obtaining constraint on the probable location and recurrence of large and damaging earthquakes near Sydney. In April 2005 a one day workshop at the University of Sydney brought together a diverse range of researchers with experience in the geology and geomorphology of the Sydney Basin, neotectonics and seismic hazard science. A series of seminars were presented covering geology, geomorphology, seismicity and seismic hazard. These served as a nucleation point for subsequent discussion, and the drafting of the papers presented herein. This proceedings volume contains within its covers tools for understanding large earthquake occurrence within the Sydney Basin and compiles 12 papers addressing landscape and structural developement, and seismic hazard aspects, of the Lapstone Structural Complex west of Sydney. Hence, it represents a framework upon which future advances in our understanding of the seismic hazard posed to Australia's largest population centre may be based.
-
Faults of the Lapstone Structural Complex (LSC) underlie 100 km, and perhaps as much as 160 km, of the eastern range front of the Blue Mountains, west of Sydney. More than a dozen major faults and monoclinal flexures have been mapped along its extent. The Lapstone Monocline is the most prominent of the flexures, and accounts for more than three quarters of the deformation across the complex at its northern end. Opinion varies as to whether recent tectonism, or erosional exhumation of a pre-existing structure, better accounts for the deeply dissected Blue Mountains plateau that we see today. Geomorphic features such as the abandoned meanders at Thirlmere Lakes illustrate the antiquity of the landscape and favour an erosional exhumation model. According to this model, over-steepened reaches developed in easterly flowing streams at the Lapstone Monocline when down-cutting through shale reached more resistant sandstone on the western side of the LSC. These over-steepened reaches drove headward (westerly) knick point retreat, ultimately dissecting the plateau. However, a series of swamps and lakes occurring where small easterly flowing streams cross the westernmost faults of the LSC, coupled with over-steepened reaches 'pinned' to the fault zones in nearby larger streams, imply that tectonism plays a continuing role in the development of this landscape. We present preliminary results from an ongoing investigation of Mountain Lagoon, a small fault-bound basin bordering the Kurrajong Fault in the northern part of the LSC.
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
No abstract available
-
Legacy product - no abstract available