greenhouse gas
Type of resources
Keywords
Publication year
Scale
Topics
-
Quantification of leakage into the atmosphere from geologically stored CO2 is achievable by means of atmospheric monitoring techniques if the position of the leak can be located and the perturbation above the background concentration is sufficiently large for discrimination. Geoscience Australia and the CO2CRC have recently constructed a site in northern Canberra for the controlled release of greenhouse gases. This facility enables the simulation of leak events and provides an opportunity to investigate techniques for the detection and quantification of emissions of CO2 (and other greenhouse gases) into the atmosphere under controlled conditions. The facility is modelled on the ZERT controlled release facility in Montana. The first phase of the installation is complete and has supported an above ground, point source, release experiment (e.g. simulating leakage from a compromised well). Phase 2 involves the installation of a shallow underground horizontal well for line source CO2 release experiments and this will be installed during the first half of 2011. A release experiment was conducted at the site to explore the application of a technique, termed atmospheric tomography, to simultaneously determine the location and emission rate of a leak when both are unknown. The technique was applied to the release of two gas species, N2O and CO2, with continuous sampling of atmospheric trace gas concentrations from 8 locations 20m distant from a central release point and measurement of atmospheric turbulence and dispersive conditions. The release rate was 1.10 ± 0.02 g min-1 for N2O and 58.5 ± 0.4 g min-1 for CO2 (equivalent to 30.7 ± 0.2 tonnes CO2 yr-1). Localisation using both release species occurred within 0.5 m (2% error) of the known location. Determination of emission rate was possible to within 7% for CO2 and 5% for N2O.
-
A short animation of an atmospheric simulation of methane emissions from a coal mine (produced using TAPM) compared to actual methane concentrations detected by the Atmospheric Monitoring Station, Arcturus in Central Queensland. It illustrates the effectiveness of both the detection and simulation techniques in the monitoring of atmospheric methane emissions. The animation shows a moving trace of both the simulated and actual recorded emissions data, along with windspeed and direction indicators. Some data provided by CSIRO Marine and Atmospheric Research.
-
Australia has been making major progress towards early deployment of carbon capture and storage from natural gas processing and power generation sources. This paper will review, from the perspective of a government agency, the current state of various Australian initiatives and the advances in technical knowledge up until the 2010 GHGT conference. In November 2008, the Offshore Petroleum and Greenhouse Gas Storage Bill 2006 was passed by the Australian Parliament and established a legal framework to allow interested parties to explore for and evaluate storage potential in offshore sedimentary basins that lie in Australian Commonwealth waters. As a result of this Act, Australia became the first country in the world, in March 2009, to open exploration acreage for storage of greenhouse gases under a system that closely mirrors the well-established Offshore Petroleum Acreage Release. The ten offshore areas offered for geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances. The co-incidence of the 2009 Global Financial Crisis may have reduced the number of prospective CCS projects that were reported to be in the 'pipe-line' and the paper examines the implications of this apparent outcome. The Carbon Storage Taskforce has brought together both Australian governments technical experts to build a detailed assessment of the perceived storage potential of Australia's sedimentary basins. This evaluation has been based on existing data, both on and offshore. A pre-competitive exploration programme has also been compiled to address the identified data gaps and to acquire, with state funding, critical geological data which will be made freely available to encourage industrial participation in the search for commercial storage sites.
-
A metadata report for the atmospheric monitoring station installed in Arcturus, south of Emerald in central Queensland. The station was installed for baseline atmospheric monitoring to contribute to emission modelling spanning 2010-2014. The station included compositional gas analysers, supporting meteorological sensors and an eddy covariance flux tower. The metadata covered in the report include: the major variables measured by each instrument, the data duration and frequency, data accuracy, calibration and corrections, the location the data is stored, and the primary contact for the data.
-
Approximately one quarter of Australia's CO2 emissions come from southeast and central Queensland. This poster presents the geoscientific interpretations which lead to constructing a simplified 3-D model of a potential geological storage site for CO2. The Bowen Basin is located in northeast Australia, approximately 200 to 500 km from major CO2 emission hubs in southeast Queensland. The resources of the Bowen Basin include coal, oil and gas, and there are water resources within the overlying Great Artesian Basin. Defining trap integrity within the Bowen Basin is important to ensure that none of these resources are compromised. The Wunger Ridge area has been the focus of petroleum exploration for hydrocarbons. Geological, geophysical, hydrodynamic, petrological, petrophysical and seal capacity interpretations of datasets from the area were undertaken. These interpretations indicate that the Triassic fluvial - deltaic Showgrounds Sandstone is the most suitable for CO2 storage and injection as it is permeable and saturated with brackish to saline water except where hydrocarbons have accumulated. Geological profiles were developed using sequence stratigraphic concepts and combined with rock properties, measured from core, to produce simplified 3-D models with the goal of assessing parameters for CO2 injection and migration. Simulation runs using simple models, based on a coarse-scale grid, suggest that either one horizontal or two vertical wells are required to inject at the proposed rate. Geological heterogeneity increases injection pressure around the wellbore and reduces injection rates compared to homogeneous models, resulting in the need for more injection wells.
-
Deployment of Unmanned Aerial Vehicle during surface CO2 release experiments at the Ginninderra greenhouse gas controlled release facility H. Berko (CO2CRC, Geoscience Australia), F. Poppa (The Australian National University), U. Zimmer (The Australian National University) and A. Feitz (CO2CRC, Geoscience Australia) Lagrangian stochastic (LS) forward modelling of CO2 plumes from above-surface release experiments conducted at the GA-CO2CRC Ginninderra controlled release facility demonstrated that small surface leaks are likely to disperse rapidly and unlikely to be detected at heights greater 4 m; this was verified using a rotorcraft to map out the plume. The CO2 sensing rotorcraft unmanned aerial vehicle (RUAV) developed at the Australian National University, Canberra, is equipped with a CO2 sensor, a GPS, lidar and a communication module. It was developed to detect and locate CO2 gas leaks; and estimate CO2 concentration at the emission source. The choice of a rotor-craft UAV allows slower flight speeds compared to speeds of a fixed-wing UAV; and the electric powered motor enables flight times of 12 min. In experiments conducted at the Ginninderra controlled release facility, gaseous CO2 (100 kg per day) was released from a small diffuse source located in the middle of the paddock, and the RUAV was flown repeatedly over the CO2 source at a few meters height. Meteorological parameters measured continuously at the site at the time of the flight were input in the LS model. Mapped out horizontal and vertical CO2 concentrations established the need to be close to the ground in order to detect CO2 leakage using aerial techniques. Using the rotorcraft as a mobile sensor could be an expedient mechanism to detect plumes over large areas, and would be important for early detection of CO2 leaks arising from CCS activities.
-
Having techniques available for the accurate quantification of potential CO2 surface leaks from geological storage sites is critical for regulators, public assurance and for underpinning carbon pricing mechanisms. Currently, there are few options available that enable accurate CO2 quantification of potential leaks at the soil-atmosphere interface. Integrated soil flux measurements can be used to quantify CO2 emission rates from the soil and atmospheric techniques such as eddy covariance or Lagrangian stochastic modelling have been used with some success to quantify CO2 emissions into the atmosphere from simulated surface leaks. The error for all of these techniques for determining the emission rate is not less than 10%. A new technique to quantify CO2 emissions was trialled at the CO2CRC Ginninderra controlled release site in Canberra. The technique, termed atmospheric tomography, used an array of sampling sites and a Bayesian inversion technique to simultaneously solve for the location and magnitude of a simulated CO2 leak. The technique requires knowledge of concentration enhancement downwind of the source and the normalized, three-dimensional distribution (shape) of concentration in the dispersion plume. Continuous measurements of turbulent wind and temperature statistics were used to model the dispersion plume.
-
Many industries and researchers have been examining ways of substantially reducing greenhouse gas emissions. No single method is likely to be a panacea, however some options do show considerable promise. Geological sequestration is one option that utilises mature technology and has the potential to sequester large volumes of CO2. In Australia geological sequestration has been the subject of research for the last 2? years within the Australian Petroleum Cooperative Research Centre's GEODISC program. A portfolio of potential geological sequestration sites (?sinks?) has been identified across all sedimentary basins in Australia, and these have been compared with nearby known or potential CO2 emission sources. These sources have been identified by incorporating detailed analysis of the national greenhouse gas emission databases with other publicly available data, a process that resulted in recognition of eight regional emission nodes. An earlier generic economic model for geological sequestration in Australia has been updated to accommodate the changes arising from this process of ?source to sink? matching. Preliminary findings have established the relative attractiveness of potential injection sites through a ranking approach. It includes the ability to accommodate the volumes of sequesterable greenhouse gas emissions predicted for the adjacent region, the costs involved in transport, sequestration and ongoing operations, and a variety of technical geological risks. Some nodes with high volumes of emissions and low sequestration costs clearly appear to be suitable, whilst others with technical and economic issues appear to be problematic. This assessment may require further refinement once findings are completed from the GEODISC site-specific research currently underway.
-
No abstract available
-
Hot Rocks in Australia - National Outlook Hill, A.J.1, Goldstein, B.A1 and Budd, A.R.2 goldstein.barry@saugov.sa.gov.au hill.tonyj@saugov.sa.gov.au Petroleum & Geothermal Group, PIRSA Level 6, 101 Grenfell St.Adelaide SA 50001 Anthony.Budd@ga.gov.au Onshore Energy & Minerals Division, Geoscience Australia, GPO Box 378 Canberra ACT 26012 Abstract: Evidence of climate change and knowledge of enormous hot rock resources are factors stimulating growth in geothermal energy research, including exploration, proof-of-concept appraisals, and development of demonstration pilot plant projects in Australia. In the six years since the grant of the first Geothermal Exploration Licence (GEL) in Australia, 16 companies have joined the hunt for renewable and emissions-free geothermal energy resources in 120 licence application areas covering ~ 67,000 km2 in Australia. The associated work programs correspond to an investment of $570 million, and that tally excludes deployment projects assumed in the Energy Supply Association of Australia's scenario for 6.8% (~ 5.5 GWe) of Australia's base-load power coming from geothermal resources by 2030. Australia's geothermal resources fall into two categories: hydrothermal (from relatively hot groundwater) and the hot fractured rock i.e. Enhanced Geothermal Systems (EGS). Large-scale base-load electricity generation in Australia is expected to come predominantly from Enhanced Geothermal systems. Geologic factors that determine the extent of EGS plays can be generalised as: - source rock availability, in the form of radiogenic, high heat-flow basement rocks (mostly granites); - low thermal-conductivity insulating rocks overlying the source rocks, to provide thermal traps; - the presence of permeable fabrics within insulating and basement rocks, that can be enhanced to create heat-exchange reservoirs; and - a practical depth-range, limited by drilling and completion technologies (defining a base) and necessary heat exchange efficiency (defining a top). A national EGS resource assessment and a road-map for the commercialisation of Australia's EGSs are expected to be published in 2008. The poster will provide a synopsis of investment frameworks and geothermal energy projects underway and planned in Australia.