From 1 - 10 / 28
  • With a population of over 250 million people, Indonesia is the fourth most populous country in the world (United Nations, 2013). Indonesia also experiences more earthquakes than any other country in the world (USGS, 2015). Its borders encompass one of the most active tectonic regions on Earth including over 18 000 km of major tectonic plate boundary, more than twice that of Japan or Papua New Guinea (Bird, 2003). The potential for this tectonic activity to impact large populations has been tragically demonstrated by the 20004 Sumatra earthquake and tsunami. In order to inform earthquake risk reduction in Indonesia, a new national earthquake hazard map was developed in 2010 (Irsyam et al., 2010). In this report historical records of damaging earthquakes from the 17th to 19th centuries are used to test our current understanding of earthquake hazard in Indonesia and identify areas where further research is needed. In this report we address the following questions: - How well does our current understanding of earthquake hazard in Indonesia reflect historical activity? - Can we associate major historical earthquakes with known active faults, and are these accounted for in current assessments of earthquake hazard? - Does the current earthquake hazard map predict a frequency and intensity of shaking commensurate with the historical record? - What would the impact of these historical earthquakes be if they were to reoccur today? To help answer questions like these, this report collates historical observations of eight large earthquakes from Java, Bali and Nusa Tenggara between 1699 and 1867. These observations are then used to: - Identify plausible sources for each event; - Develop ground shaking models using the OpenQuake Engine (GEM Foundation, 2015); - Assess the validity of the current national seismic hazard map; and - Estimate fatalities were the historical events to occur today using the InaSAFE (InaSAFE.org, 2015) software.

  • The Greater Metro Manila Area is one of the world's megacities and is home to about 12 million people. It is located in a region at risk from earthquakes, volcanic eruptions, tropical cyclones, riverine flooding, landslides and other natural hazards. Major flooding affected the Greater Metro Manila Area in September 2009 following the passage of Typhoon Ketsana (known locally as Typhoon Ondoy). Following this event, the Australian Aid Program supported Geoscience Australia to undertake a capacity building project with its partner agencies in the Government of the Philippines. The output of this project has been a series of risk information products developed by agencies in the Collective Strengthening of Community Awareness for Natural Disasters (CSCAND) group. These products quantify the expected physical damage and economic loss to buildings caused by earthquakes, tropical cyclone severe wind and riverine flooding across the Greater Metro Manila Area. Spatial data is a key input to the development of hazard models and information on exposure, or the 'elements at risk'. The development of a spatially enabled exposure database was a crucial element in the construction of risk information products for the Greater Metro Manila Area. The database provides one central repository to host consistent information about the location, size, type, age, residential population and structural characteristics of buildings within the area of interest. Unique spatial analysis techniques were employed to quantify and record important aspects of the built environment, for inclusion in the database. The process of exposure data development within the Greater Metro Manila Area, including a new application developed by Geoscience Australia for estimating the geometric characteristics of buildings from high resolution elevation data and multi-spectral imagery, will be presented.

  • Heterogeneous distribution of slip during megathrust earthquakes has been shown to significantly affect the spatial distribution of tsunami height in both numerical studies and field observations. This means that tsunami hazard maps generated using uniform slip distributions in their tsunami source models may underestimate tsunami inundation in some locations compared with real events of the same magnitude in the same location. In order to more completely define areas that may be inundated during a tsunami it is important to consider how different possible distributions of slip will impact different parts of the coastline. We generate tsunami inundation maps for the Mentawai Islands, West Sumatra, Indonesia, from a composite suite of possible source models that are consistent with current knowledge of the source region. First, a suite of earthquake source models with randomly distributed slip along the Mentawai Segment of the Sunda Subduction Zone is generated using a k-2 rupture model. From this suite we select source models that generate vertical deformation consistent with that observed in coral palaeogeodetic records of previous ruptures of the Mentawai Segment in 1797 and 1833, minus deformation observed in the 2007 Bengkulu earthquake sequence. Tsunami inundation is then modelled using high resolution elevation data for selected source models and the results compiled to generate a maximum tsunami inundation zone. This method allows us to constrain the slip distribution beneath the Mentawai Islands, where coral palaeogeodetic data is available, while allowing for greater variation in the slip distribution away from the islands, in particular near the trench where large slip events can generate very large tsunami. This method also allows us to consider high slip events on deeper portions of the megathrust between the Mentawai Islands and the Sumatran Mainland, which give greater tsunami inundation on the eastern part of the Mentawai Islands and the west coast of Sumatra compared with near-trench event. By accounting for uncertainty in slip distribution, the resulting hazard maps give a more complete picture of the areas that may be inundated compared with hazard maps derived from a single 'worst case' source model. These maps allow for more robust tsunami evacuation plans to be developed to support immediate community evacuation in response to strong or long-lasting earthquake ground shaking. From the American Geophysical Union Fall Meeting Abstracts

  • Papua New Guinea (PNG) lies in a belt of intense tectonic activity that experiences high levels of seismicity. Although this seismicity poses significant risks to society, the Building Code of PNG and its underpinning seismic loading requirements have not been revised since 1982. This study aims to partially address this gap by updating the seismic zoning map on which the earthquake loading component of the building code is based. We performed a new probabilistic seismic hazard assessment for PNG. Among other enhancements, for the first time together with background sources, individual fault sources are implemented to represent active major and microplate boundaries in the region to better constrain the earthquake-rate and seismic-source models. The seismic-source model also models intraslab, Wadati-Benioff zone seismicity in a realistic way using a continuous slab volume to constrain the finite ruptures of such events. The results suggest a high level of hazard in the coastal areas of the Huon Peninsula and the New Britain–Bougainville region, and a relatively low level of hazard in the southern part of the New Guinea Highlands Block. In comparison with the seismic zonation map in the current design standard, it can be noted that the spatial distribution used for building design does not match the bedrock hazard distribution of this study. In particular, the high seismic hazard of the Huon Peninsula in the revised assessment is not captured in the current building code of PNG. We will also discuss how the seismic hazard map of PNG is being used to underpin its building code, including what steps have been taken by GA together with the Government of PNG to promote uptake of the new hazard map by PNG’s earthquake engineering community.

  • <div>On January 15, 2022, an ongoing eruption at the Hunga volcano generated a large explosion which resulted in a globally observed tsunami and atmospheric pressure wave. This paper presents time series observations of the event from Australia including 503 mean sea level pressure (MSLP) sensors and 111 tide gauges. Data is provided in its original format, which varies between data providers, and a post-processed format with consistent file structure and time-zone. High-pass filtered variants of the data are also provided to facilitate study of the pressure wave and tsunami. For a minority of tide gauges the raw sea level data cannot be provided, due to licence restrictions, but high-pass filtered data is always provided. The data provides an important historical record of the Hunga volcano pressure wave and tsunami in Australia. It will be useful for research in atmospheric and ocean waves associated with large volcanic eruptions. <b>Citation:</b> Davies, G., Wilson, K., Hague, B. et al. Australian atmospheric pressure and sea level data during the 2022 Hunga-Tonga Hunga-Ha’apai volcano tsunami. <i>Sci Data</i> <b>11</b>, 114 (2024). https://doi.org/10.1038/s41597-024-02949-2

  • The Government of Indonesia has committed to deploying a network of 500 strong-motion sensors throughout the nation. The data from these sensors have the potential to provide critical near-real-time information on the level of ground shaking and potential impact from Indonesian earthquakes near communities. We describe the implementation of real-time ‘ShakeMaps’ within Indonesia's Agency of Meteorology, Climatology and Geophysics (BMKG). These ShakeMaps are intended to underpin real-time earthquake situational awareness tools. The use of the new strong-motion network is demonstrated for two recent earthquakes in northern Sumatra: the 2 July 2013 Mw 6.1 Bener Meriah, Sumatra and the 10 October 2013 Mw 5.4 Aceh Besar earthquakes. The former earthquake resulted in 35 fatalities, with a further 2400 reported injuries. The recently integrated ShakeMap system automatically generated shaking estimates calibrated by BMKG's strong-motion network within 7 min of the Bener Meriah earthquake's origin, which assisted the emergency response efforts. Recorded ground motions are generally consistent with theoretical models. However, more analysis is required to fully characterize the attenuation of strong ground motion in Indonesia.

  • Tsunami hazard modelling for Tonga shows the potential impacts of tsunami generated by a very large earthquake on the nearby Tongan Trench.

  • The Assessment of Tropical Cyclone Risks in the Pacific Region project represents a collaboration between DIICCSRTE and Geoscience Australia with PCRAFI and AIR Worldwide. Building on the expertise of each organisation, the project will deliver an assessment of the financial risks to buildings, infrastructure and agriculture arising from tropical cyclones (TCs) under current and future climate regimes. This extends previous risk assessments undertaken by incorporating the influence of climate change on the hazard (TCs) into the assessment process. The output of this study is a set of peril matrices, which detail the relative change in parameters describing TC behaviour: e.g. annual mean frequency, mean maximum intensity and mean latitude of genesis. The relative changes are evaluated as the fractional change between TC behavior in current climate GCM simulations and future climate GCM simulations.

  • Probabilistic seismic hazard map of Papua New Guinea, in terms of Peak Ground Acceleration, is developed for return period of 475 years. The calculations were performed for bedrock site conditions (Vs30=760 m/s). Logic-tree framework is applied to include epistemic uncertainty in seismic source as well as ground-motion modelling processes. In this regard two source models, using area source zones and smoothed seismicity, are developed. Based on available geological and seismological data, defined seismic sources are classified into 4 different tectonic environments. For each of the tectonic regimes three Ground Motion Prediction Equations are selected and used to estimate the ground motions at a grid of sites with spacing of 0.1 degree in latitude and longitude. Results show high level of hazard in the coastal areas of Huon Peninsula and New Britain/ Bougainville regions and relatively low level of hazard in the southern part of the New Guinea highlands block. In Huon Peninsula, as shown by seismic hazard disaggregation results, high level of hazard is caused by modelled frequent moderate to large earthquakes occurring at Ramu-Markham Fault zone. On the other hand in New Britain/Bougainville region, the geometry and distance to the subduction zone along New Britain Trench mainly controls the calculated level of hazard. It is also shown that estimated level of PGAs is very sensitive to the selection of GMPEs and overall the results are closer to the results from studies using more recent ground-motion models.

  • <div>The city of Lae is Papua New Guinea (PNG)’s second largest, and is the home of PNG’s largest port. Here, a convergence rate of ~50 mm/yr between the South Bismarck Plate and the Australian Plate is accommodated across the Ramu-Markham Fault Zone (RMFZ). The active structures of the RMFZ are relatively closely spaced to the west of Lae. However, the fault zone bifurcates immediately west of the Lae urban area, with one strand continuing to the east, and a second strand trending southeast through Lae City and connecting to the Markham Trench within the Huon Gulf. </div><div>The geomorphology of the Lae region relates to the interaction between riverine (and limited marine) deposition and erosion, and range-building over low-angle thrust faults of the RMFZ. Flights of river terraces imply repeated tectonic uplift events; dating of these terraces will constrain the timing of past earthquakes and associated recurrence intervals. Terrace riser heights are typically on the order of 3 m, indicating causative earthquake events of greater than magnitude 7. </div><div>Future work will expose the most recently active fault traces in trenches to assess single event displacements, and extend the study to the RMFZ north of Nadzab Airport. These results will inform a seismic hazard and risk assessment for Lae city and surrounding region.</div> Presented at the 2023 Australian Earthquake Engineering Society (AEES) Conference