EFTF – Exploring for the Future
Type of resources
Keywords
Publication year
Topics
-
The first phase of the Australian Government's Exploring for the Future (EFTF) was a multi-year (2016-2020) $100.5 million initiative to increase northern Australia's desirability as a destination for industry investment to stimulate ‘greenfield’ resource exploration. In order to support this fundamental objective of the EFTF program, Geoscience Australia conducted acquisition of a diverse range of new precompetitive datasets across northern Australia, focussing on regions of unrecognised mineral, energy and groundwater resource potential. The Barkly 2D Deep Crustal Reflection Seismic Survey (L212) was acquired in 2019 as a major objective of the EFTF program in partnership with, and co-funded by, the NT Government under the Resourcing the Territory initiative. The Barkly Seismic Survey extends from the newly discovered Carrara Sub-basin in the South Nicholson Basin region to the south-eastern margins of the Beetaloo Sub-basin (Fomin, T., et al. 2019). The Barkly Seismic Survey images interpreted Paleoproterozoic to Mesoproterozoic successions extending from the Carrara Sub-basin to the highly prospective Beetaloo Sub-basin of the McArthur Basin. These successions are concealed by a persistent cover of up to 600 m of Paleozoic Georgina Basin sediments. Interpretation of the Barkly Seismic Survey established three informal geological domains, each defined by structural elements and/or basin characteristics (Southby et al, 2021). This data set contains an exported set of XYZ points from interpreted horizons (Southby et al 2022,) on the Barkly Seismic Survey (L212) in both two way time (TWT ms on PreSTM_19ga lines) and depth (m) re-interpreted on depth indexed PreSDM_19GA lines. The coordinate reference system for this dataset is WGS 1984 Australian Centre for Remote Sensing Lambert. Seismic reference datum is 350 m. The seismic reference datum are described in the EBCDIC headers of the SEGY files for each of the survey lines. Fomin, T., Costelloe, R.D., Holzschuh, J. 2019. L212 Barkly 2D Seismic Survey. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/132890 Southby, C., Rollet, N., Carson, C., Carr, L., Henson, P., Fomin, T., Costelloe, R., Doublier, M., Close, D. 2021. The Exploring for the Future 2019 Barkly Reflection Seismic Survey: Key discoveries and implication for resources. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/145107 Southby, C., Carson, C.J., Fomin, T., Rollet, N., Henson, P.A., Carr, L.K., Doublier, M.P., Close, D. 2022. Exploring for the Future - The 2019 Barkly Reflection Seismic Survey (L212). RECORD: 2022/009. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2022.009
-
Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments. The first phase of the EFTF program (2016-2020) aimed to drive industry investment in resource exploration in frontier regions of northern Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential (Carr et al 2018). The South Nicholson Basin and immediate surrounding region is situated between Paleo-Mesoproterozoic Mount Isa Province and McArthur Basin. Both the Mount Isa Province and McArthur Basin are well studied. By contrast, the adjacent South Nicholson region is less studied, and contains rocks that are mostly undercover, for which the basin evolution and resource potential is not well understood. To address this gap, the L210 South Nicholson Deep Crustal Seismic Survey was collected in 2017 in the region between the southern McArthur Basin to the Mount Isa western succession, crossing the South Nicholson Basin and Murphy Province, providing a fundamental data link across these regions (L210 South Nicholson Deep Crustal Seismic Reflection Survey). The primary aim of the survey was to investigate areas with a low measured gravity response in the region to determine whether they represent thick basin sequences, as is the case for the nearby prospective Beetaloo Sub-basin. The interpretation of this survey led to the discovery of a new basin, the Carrara Sub-basin, coinciding with a gravity low in the south-eastern South Nicholson Basin Region. This data set contains an exported set of XYZ points from interpreted horizons (Carr et al 2019) on the South Nicholson Seismic Survey (L210) in both two way time (TWT ms on PreSTM_17ga lines) and depth (m) re-interpreted on depth indexed PreSDM_17GA lines. The coordinate reference system for this dataset is WGS 1984 Australian Centre for Remote Sensing Lambert. Seismic reference datum is 350 m. The seismic reference datum are described in the EBCDIC headers of the SEGY files for each of the survey lines. Carr, L.K., Southby, C., Henson, P., Costello, R., Anderson, J.R., Jarrett, A.J M., Carson, C.J., Gorton, J., Hutton, L.J., Troup, A., Williams, B., Khider, K., Bailey, A. & Fomin, T. 2019. Exploring for the Future: South Nicholson Basin geological summary and seismic interpretation. Record 2019/21, Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2019.021 Carr, L.K., Southby, C., Henson, P., Anderson, J.R., Costelloe, R., Jarrett, A.J.M., Carson, C.J., MacFarlane, S.K., Gorton, J., Hutton, L., Troup, A, Williams, B., Khider, K., Bailey, A.H.E., Fomin, T. 2020. South Nicholson Basin seismic interpretation. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/132029 L210 South Nicholson Deep Crustal Seismic Reflection Survey, NT and QLD, 2017. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/116881.
-
The Officer Basin in South Australia and Western Australia is the focus of a regional stratigraphic study being undertaken by the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to increasing investment in resource exploration in Australia. This data release provides data from new digital photography, X-ray Computerised Tomography (XCT) scanning, unconfined compressive strength (UCS) and tensile strength, laboratory ultrasonic testing, and gas porosity and permeability experiments for 41 samples from five legacy stratigraphic and petroleum exploration boreholes drilled within the Officer Basin. Additional low permeability tests were undertaken on select samples that were identified as being ultra-tight (permeability <1 µD). These samples were analysed at CSIRO Geomechanics and Geophysics Laboratory in Perth during April to June 2021.
-
Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments. The first phase of the EFTF program (2016-2020) aimed to drive industry investment in resource exploration in frontier regions of northern Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential. One of the key discoveries of the first phase of the Exploring for the Future program was the identification of a large sedimentary depocentre in the South Nicholson region, an underexplored area straddling north-eastern Northern Territory and north-western Queensland. This depocentre, up to 8 km deep, was termed the ‘Carrara Sub-basin’ by Geoscience Australia. It is interpreted to contain thick sequences of Proterozoic rocks, broadly equivalent to rocks of the greater McArthur Basin (Northern Territory) and northern Lawn Hill Platform and Mount Isa Province (Queensland), known to be highly prospective for sediment-hosted base metals and unconventional hydrocarbons. In order to gain insights into the resource potential of the Carrara Sub-basin, the South Nicholson National Drilling Initiative (NDI) Carrara 1 stratigraphic drillhole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS) and the MinEx CRC . NDI Carrara 1 is the first drillhole to intersect the, as yet, undifferentiated Proterozoic rocks of the Carrara Sub-Basin. NDI Carrara 1 is located on the western flanks of the Carrara Sub-basin on the South Nicholson Seismic line (17GA-SN1), reaching a total depth of 1751 mGL, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and minor siliciclastics . Geoscience Australia is undertaking a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara 1 based on wireline data, as well as undertaking a range of analyses of over 400 physical samples recovered through the entire core. This report presents new data from bulk density measurements carried out on selected rock samples as part of this comprehensive analytical program.
-
NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. A comprehensive geochemical program designed to provide information about the region’s resource potential was carried out on samples collected at up to 4 meter intervals. This report presents data from magnetic susceptibility analyses undertaken by Geoscience Australia on selected rock samples to establish their ability to be magnetised in an applied external magnetic field.
-
Maps showing the potential for sediment-hosted base metal mineral systems in Australia. Each of the mineral potential maps is a synthesis of four component layers: sources of metals, energy drivers, lithospheric architecture, and depositional gradients, using a weighted sum to produce the final mineral potential map for the mineral system. Uncertainty maps are provided in conjunction with each of the mineral potential maps that represent the availability of data coverage over Australia for the selected combination of input maps. Uncertainty values range between 0 and 1, with higher uncertainty values being located in areas where more input maps are missing data or have unknown values. The set of input maps used to generate the mineral potential maps is provided along with an assessment criteria table that contains information on the map creation.
-
<div>The Exploring for the Future (EFTF) program is an Australian government initiative aimed at stimulating investment in resource exploration and development. It operates multiple interconnected projects, such as the Australia’s Resources Framework (ARF), a continental-scale endeavor to enhance understanding of Australia's geology and resource potential. A module of ARF, the Geochemistry for Basin Prospectivity (G4BP), studies Australian basins with prospective base metal mineral systems. </div><div><br></div><div>The current report focuses on the Neoproterozoic segment of the Stuart Shelf region in South Australia, a part of the Adelaide Rift Complex. This research is conducted collaboratively with the Geological Survey of South Australia, examining sediment-hosted copper potential in the rift complex.</div><div><br></div><div>The Adelaide Rift Complex is a geological formation that underwent extensive sedimentation from the Neoproterozoic to early Cambrian, particularly within the rift zone. Stuart Shelf sediments overlay Mesoproterozoic magmatic and Paleoproterozoic metasediment layers. The complex hosts multiple copper deposits, which are usually associated with movement of basinal brines that leach metals from lower basinal layers or rift-related volcanic rocks.</div><div><br></div><div>To improve understanding of the geology of the Stuart Shelf and related copper mineralisation, two primary objectives were set: </div><div><br></div><div>1. Geochemical fingerprinting and baseline data collection: This involves compilation and reanalysis of existing data, along with new data collection aimed at providing comprehensive geochemical data for stratigraphic units within the Stuart Shelf.</div><div><br></div><div>2. Identification of mineral system components: Utilising data from the first objective, this phase aims to identify potential metal and fluid sources and potential sites of metal deposition. </div><div>In conjunction with these efforts, a GA-GSSA geochemical sampling project is underway, tying geochemistry to lithostratigraphic units and facies. The newly acquired geochemical data will be integrated into the overall GSSA-CSIRO project to contribute to a more comprehensive understanding of the sediment-hosted stratabound mineral system.</div><div><br></div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>We present a 3-D resistivity model derived from magnetotelluric data collected by two recent surveys in the Curnamona and Delamerian Region: the Curnamona Cube survey led by the University of Adelaide and funded by AuScope and the Curnamona Cube Extension survey (https://doi.org/10.26186/147904) by Geoscience Australia as part of Exploring for the Future Program. In total, data from 231 sites were used to produce 3-D models using the ModEM code. Details of data inversion are provided in the Readme.pdf file. The resistivity model can be used to enhance the understanding of the geodynamics and mineral potential in the Curnamona Province and Delamerian Orogen.</div><div><br></div><div>We greatly appreciate that Prof. Graham Heinson from the University of Adelaide has made the Curnamona Cube survey data available for this work. The modelling work was undertaken with the assistance of resources from the National Computational Infrastructure (NCI Australia).</div><div><br></div><div>This release package contains the preferred 3-D resistivity model in SGrid format and geo-referenced depth slices in .tif format.</div><div><br></div>
-
Major oxides provide valuable information about the composition, origin, and properties of rocks and regolith. Analysing major oxides contributes significantly to understanding the nature of geological materials and processes (i.e. physical and chemical weathering) – with potential applications in resource exploration, engineering, environmental assessments, agriculture, and other fields. Traditionally most measurements of oxide concentrations are obtained by laboratory assay, often using X-ray fluorescence, on rock or regolith samples. To expand beyond the point measurements of the geochemical data, we have used a machine learning approach to produce seamless national scale grids for each of the major oxides. This approach builds predictive models by learning relationships between the site measurements of an oxide concentration (sourced from Geoscience Australia’s OZCHEM database and selected sites from state survey databases) and a comprehensive library of covariates (features). These covariates include: terrain derivatives; climate surfaces; geological maps; gamma-ray radiometric, magnetic, and gravity grids; and satellite imagery. This approach is used to derive national predictions for 10 major oxide concentrations at the resolution of the covariates (nominally 80 m). The models include the oxides of silicon (SiO2), aluminium (Al2O3), iron (Fe2O3tot), calcium (CaO), magnesium (MgO), manganese (MnO), potassium (K2O), sodium (Na2O), titanium (TiO2), and phosphorus (P2O5). The grids of oxide concentrations provided include the median of multiple models run as the prediction, and lower and upper (5th and 95th) percentiles as measures of the prediction’s uncertainty. Higher uncertainties correlate with greater spreads of model values. Differences in the features used in the model compared with the full feature space covering the entire continent are captured in the ‘covariate shift’ map. High values in the shift model can indicate higher potential uncertainty or unreliability of the model prediction. Users therefore need to be mindful, when interpreting this dataset, of the uncertainties shown by the 5th-95th percentiles, and high values in the covariate shift map. Details of the modelling approach, model uncertainties and datasets are describe in an attached word document “Model approach uncertainties”. This work is part of Geoscience Australia’s Exploring for the Future program that provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. These data are published with the permission of the CEO, Geoscience Australia.
-
<div>The Exploring for the Future program is a world leading program, delivering public geoscientific data and information required to empower decision-makers and attract future investment in resource exploration and development. Geoscience Australia engaged Alluvium Consulting Australia to quantify the impact and value of groundwater activities and outputs to the quadruple bottom line through an evaluation of 2 case studies, namely: • National Hydrogeological Mapping • The Southern Stuart Corridor project. This involved understanding the impact pathways for these case studies and the collection of data to be used in a cost benefit analysis. The work sought to provide feedback to Geoscience Australia, stakeholder groups and the broader community on the value of Geoscience Australia’s groundwater activities. The case study evaluations were facilitated by a series of specific questions, which were developed to guide data collection and the building of a knowledge base around the impact and value of the work in each case study and associated outputs. The questions broadly fell under the following categories: 1. Uptake and Usage 2. Impact 3. Benefit These evaluations were framed around the program impact pathway developed for each case study. This is a description of how inputs are used to deliver activities, which in turn result in outcomes and impacts (changes) for stakeholders, including the environment. The primary means of data collection to help answer the key evaluation questions was through online workshops and interviews with key stakeholders for each case study. These were undertaken between March 10 and March 24, 2023. In these workshops and interviews, representatives from industry, community and government agencies were asked if they could identify instances where case study program outputs were used for particular purposes, such as prioritising research or investment, advising Members of Parliament, or education and training. These examples were then explored further to understand what outcomes and benefits were derived from the use of the case study outputs, and how critical were the case study outputs to achieving those outcomes and benefits</div>