From 1 - 10 / 25
  • Since the publication of the Global Seismic Hazard Assessment Project (GSHAP) hazard map in 1999, Australia has stood out as a region of high earthquake hazard among its stable continental region (SCR) peers. The hazard map underpinning the GSHAP traces its lineage back to the 1990 assessment of Gaull and others. This map was modified through a process of expert judgement in response to significant Australian earthquakes (notably the MW 6.2, 6.3 and 6.6 1988 Tennant Creek sequence and the deadly 1989 MW 5.4 Newcastle earthquake). The modified map, developed in 1991 (McCue and others, 1993), underpins Standards Australia’s structural design actions to this day (AS1170.4–2007). But does this assessment make sense with our current understanding of earthquake processes in SCRs? Geoscience Australia (GA) have embarked to update the seismic hazard model for Australia through the National Seismic Hazard Assessment (NSHA18) project. Members of the Australian seismological community were solicited to contribute alternative seismic source models for consideration as inputs to the updated Australian NSHA18. This process not only allowed for the consideration of epistemic uncertainty in the hazard model in a more comprehensive and transparent manner, but also provides the community as a whole ownership of the final model. The 3rd party source models were assessed through an expert elicitation process that weighed the opinion of each expert based on their knowledge and ability to judge relevant uncertainties. In total, 19 independent seismic source models (including regional and background area sources, smoothed seismicity and seismotectonic sources) were considered in the complete source model. To ensure a scientifically rigorous, transparent and quality product, GA also established a Scientific Advisory Panel to provide valuable and ongoing feedback during the development of the NSHA18. The NSHA18 update yields many important advances on its predecessors, including: calculation in a full probabilistic framework using the OpenQuake-engine; consistent expression of earthquake magnitudes in terms of MW; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model based on the Australian Neotectonic Features database; inclusion of epistemic uncertainty on fault occurrence models and earthquake clustering; and the use of modern ground-motion models. The preliminary NSHA18 design values are significantly lower than those in the current (1991-era) AS1170.4–2007 map at the 10% in 50-year probability level. However, draft values at lower probabilities (i.e., 2% in 50-years) are entirely consistent (in terms of the percentage land mass exceeding different PGA thresholds) with other SCRs with low strain rates (e.g. the central & eastern United States). The large reduction in seismic hazard at the 10% in 50-year probability level has led to much consternation amongst the building code committee in terms of whether the new draft design values will allow enough resilience to seismic loads. This process underscores the challenges in developing national-scale PSHAs in slowly deforming regions, where 10% in 50-year probability level may not adequately capture the maximum considered earthquake ground motions. Consequently, a robust discussion is required is amongst the Australian building code committee (including hazard practitioners) to determine alternative hazard and/or risk objectives that could be considered for future standards. Presented at the Probabilistic Seismic Hazard Assessment (PSHA) Workshop 2017, Lenzburg, Switzerland

  • <div>This document provides a summary of fault parameterisation decisions made for the faults comprising the fault-source model (FSM) for 2023 National Seismic Hazard Assessment (NSHA23).&nbsp;As with the NSHA18, the FSM for the NSHA23 implementation requires the following parameters: simplified surface trace, dip, dip direction, and slip-rate. As paleoseismic data exist for only a few of the approximately 400 faults within the Australian Neotectonic Features database, we use the Neotectonic Domains model as a framework to parametrise uncharacterised faults.</div>

  • <div>The city of Lae is Papua New Guinea (PNG)’s second largest, and is the home of PNG’s largest port. Here, a convergence rate of ~50 mm/yr between the South Bismarck Plate and the Australian Plate is accommodated across the Ramu-Markham Fault Zone (RMFZ). The active structures of the RMFZ are relatively closely spaced to the west of Lae. However, the fault zone bifurcates immediately west of the Lae urban area, with one strand continuing to the east, and a second strand trending southeast through Lae City and connecting to the Markham Trench within the Huon Gulf. </div><div>The geomorphology of the Lae region relates to the interaction between riverine (and limited marine) deposition and erosion, and range-building over low-angle thrust faults of the RMFZ. Flights of river terraces imply repeated tectonic uplift events; dating of these terraces will constrain the timing of past earthquakes and associated recurrence intervals. Terrace riser heights are typically on the order of 3 m, indicating causative earthquake events of greater than magnitude 7. </div><div>Future work will expose the most recently active fault traces in trenches to assess single event displacements, and extend the study to the RMFZ north of Nadzab Airport. These results will inform a seismic hazard and risk assessment for Lae city and surrounding region.</div> Presented at the 2023 Australian Earthquake Engineering Society (AEES) Conference

  • We present the first paleoseismic investigation of the Hyde Fault, one of a series of north-east striking reverse faults within the Otago range and basin province in southern New Zealand. Surface traces of the fault and associated geomorphology were mapped using a lidar digital elevation model and field investigations. Trenches were excavated at two sites across fault scarps on alluvial fan surfaces. The trenches revealed stratigraphic evidence for four surface-rupturing earthquakes. Optically stimulated luminescence dating constrains the timing of these events to around 47.2 ka (37.5–56.7 ka at 95% confidence), 34.6 ka (24.7–46.4 ka),23.5 ka (19.7–27.3 ka) and 10.5 ka (7.9–13.1 ka). We obtain a mean inter-event time of12.4 kyr (2.3–23.9 kyr at 95% confidence) and the slip rate is estimated to be 0.22 mm/yr (0.15–0.3 mm/yr). We do not find evidence to suggest that earthquake recurrence on the Hyde Fault is episodic, in contrast to other well-studied faults within Otago, suggesting diverse recurrence styles may co-exist in the same fault system. This poses challenges for characterising the seismic hazard potential of faults in the region, particularly when paleoearthquake records are limited to the most recent few events. <b>Citation:</b> Jonathan D. Griffin, Mark W. Stirling, David J.A. Barrell, Ella J. van den Berg, Erin K. Todd, Ross Nicolls & Ningsheng Wang (2022) Paleoseismology of the Hyde Fault, Otago, New Zealand, <i>New Zealand Journal of Geology and Geophysics</i>, 65:4, 613-637, DOI: 10.1080/00288306.2021.1995007

  • An updated National Seismic Hazard Assessment of Australia was released in 2018 (the NSHA18). This assessment leveraged off advances in earthquake-hazard science in Australia and analogue tectonic regions to offer many improvements over its predecessors. The outcomes of the assessment represent a significant shift in the way national-scale seismic hazard is modelled in Australia, and so challenged long-held notions of seismic hazard amongst the Australian seismological and earthquake engineering community. The NSHA18 is one of the most complex national-scale seismic hazard assessments conducted to date, comprising 19 independent seismic source models (contributed by Geoscience Australia and third-party contributors) with three tectonic region types, each represented by at least six ground motion models each. The NSHA18 applied a classical probabilistic seismic hazard analysis (PSHA) using a weighted logic tree approach, where the model weights were determined through two structured expert elicitation workshops. The response from the participants of these workshops was overwhelmingly positive and the participants appreciated the opportunity to contribute towards the model’s development. Since the model’s publication, Geoscience Australia has been able to reflect on the choices made both through the expert elicitation process and through decisions made by the NSHA18 team. The consequences of those choices on the production of the final seismic hazard model may not have been fully appreciated prior to embarking on the development of the NSHA18, nor during the expert elicitation workshops. The development of the NSHA18 revealed several philosophical challenges in terms of characterising seismic hazard in regions of low seismicity such as Australia. Chief among these are: 1) the inclusion of neotectonic faults, whose rupture characteristics are underexplored and poorly understood; 2) processes for the adjustment and conversion of historical earthquake magnitudes to be consistently expressed in terms of moment magnitude; 3) the relative weighting of different seismic-source classes (i.e., background, regional, smoothed seismicity, etc) for different regions of interest and exceedance probabilities; 4) the assignment of Gutenberg-Richter b-values for most seismic source models based on b-values determined from broad neotectonic domains, and; 5) the characterisation and assignment of ground-motion models used for different tectonic regimes. This paper discusses lessons learned through the development of the NSHA18, identifies successes in the expert elicitation and modelling processes, and explores some of the abovementioned challenges that could be reviewed for future editions of the model. Abstract presented at the 17th World Conference on Earthquake Engineering (17WCEE )

  • Geoscience Australia has produced a draft National Seismic Hazard Assessment (NSHA18), together with contributions from the wider Australian seismology community. This paper provides an overview of the provisional peak ground acceleration (PGA) hazard values and discusses rationale for changes in the proposed design values at the 1/500-year annual exceedance probability (AEP) level relative to Standards Australia’s AS1170.4–2007 design maps. The NSHA18 update yields many important advances on its predecessors, including: consistent expression of earthquake magnitudes in moment magnitude; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model; inclusion of epistemic uncertainty on fault-slip-model magnitude-frequency distributions and earthquake clustering; and the use of modern ground-motion models through a weighted logic tree framework. In general, the 1/500-year AEP seismic hazard values across Australia have decreased relative to the earthquake hazard factors the AS1170.4–2007, in most localities significantly. The key reasons for the decrease in seismic hazard factors are due to: the reduction in the rates of moderate-to-large earthquakes through revision of earthquake magnitudes; the increase in b-values through the conversion of local magnitudes to moment magnitudes, particularly in eastern Australia, and; the use of modern ground-motion attenuation models. Whilst the seismic hazard is generally lower than in the present standard, we observe that the relative proportion of the Australian landmass exceeding given PGA thresholds is consistent with other national hazard models for stable continental regions. Abstract presented at the 2017 Australian Earthquake Engineering Society (AEES) Conference

  • <div>The presence of Pliocene marine sediments in the Myponga and Meadows basins within the Mt Lofty Ranges south of Adelaide is testament to over 200&nbsp;m of tectonic uplift within the last 5 Myr (e.g., Sandiford 2003, Clark 2014). The spatiotemporal distribution of uplift amongst the various faults within the range and along the range fronts is poorly understood. Consequently, large uncertainties are associated with estimates of the hazard that the faults pose to proximal communities and infrastructure.</div><div>&nbsp;</div><div>We present the preliminary results of a paleoseismic investigation of the southern Willunga Fault, ~40 km south of Adelaide. Trenches were excavated across the fault to examine the relationships between fault planes and sedimentary strata. Evidence is preserved for 3-5 ground-rupturing earthquakes since the Middle to Late Pleistocene, with single event displacements of 0.5 – 1.7 m. Dating of samples will provide age constraints on the timing of these earthquakes. This most recent part of the uplift history may then be related to the longer-term landscape evolution evidenced by the uplifted basins, providing an enhanced understanding of the present-day seismic hazard.</div> This abstract was presented at the Australian & NZ Geomorphology Group (ANZGG) Conference in Alice Springs 26-30 September 2022. https://www.anzgg.org/images/ANZGG_2022_First_circular_Final_V3.pdf

  • We present earthquake ground motions based upon a paleoseismically-validated characteristic earthquake scenario for the ~ 48 km-long Avonmore scarp, which overlies the Meadow Valley Fault, east of Bendigo, Victoria. The results from the moment magnitude MW 7.1 scenario earthquake indicate that ground motions are sufficient to be of concern to nearby mining and water infrastructure. Specifically, the estimated median peak ground acceleration (PGA) exceeds 0.5 g to more than ~ 10 km from the source fault, and a 0.09 g PGA liquefaction threshold is exceeded out to approximately 50-70 kilometres. Liquefaction of susceptible materials, such as mine tailings, may occur to much greater distances. Our study underscores the importance of identifying and characterising potentially active faults in proximity to high failure-consequence dams, including mine tailings dams, particularly in light of the requirement to manage tailing dams for a prolonged period after mine closure. Paper presented at Australian National Committee on Large Dams (ANCOLD) conference 2020, online. (https://leishman.eventsair.com/ancold-2020-online/)

  • Modern probabilistic seismic hazard assessments rely on earthquake catalogs consistently expressed in terms of moment magnitude, MW. However, MW is still not commonly calculated for small local events by many national networks. The preferred magnitude type calculated for local earthquakes by Australia’s National Earthquake Alerts Centre is local magnitude, ML. For use in seismic hazard forecasts, magnitude conversion equations are often applied to convert ML to MW. Unless these conversions are time-dependent, they commonly assume that ML estimation has been consistent for the observation period. While Australian-specific local magnitude algorithms were developed from the late 1980s and early 1990s, regional, state and university networks did not universally adopt these algorithms, with some authorities continuing to use Californian magnitude algorithms. Californian algorithms are now well-known to overestimate earthquake magnitudes for Australia. Consequently, the national catalogue contains a melange of contributing authorities with their own methods of magnitude estimation. The challenge for the 2018 National Seismic Hazard Assessment of Australia was to develop a catalog of earthquakes with consistent local magnitudes, which could then be converted to MW. A method was developed that corrects magnitudes using the difference between the original (inappropriate) magnitude formula and the Australian-specific corrections at a distance determined by the nearest recording station likely to have recorded the earthquake. These corrections have roughly halved the rates of ML 4.5 earthquakes in the Australian catalogue. To address ongoing challenges for catalog improvement, Geoscience Australia is digitising printed and hand-written observations preserved on earthquake data sheets. Once complete, this information will provide a valuable resource that will allow for further interrogation of pre-digital data and enable refinement of historical catalogs. Presented at the 2019 Seismological Society of America Conference, Seattle in the special session on “Seismology BC(d)E: Seismology Before the Current (digital) Era”

  • Because all modern ground motion prediction equations (GMPEs) are now calibrated to the moment magnitude scale MW, it is essential that earthquake rates are also expressed in terms of moment magnitudes for probabilistic seismic hazard analyses. However, MW is not routinely estimated for earthquakes in Australia because of the low-to-moderate level of seismicity, coupled with the relatively small number of seismic recording stations. As a result, the Australian seismic catalogue has magnitude measures mainly based on local magnitudes, ML. To homogenise the earthquake catalogue based on a uniform MW, a “reference catalogue” that includes earthquakes with available MW estimates was compiled. This catalogue consists of 240 earthquakes with original MW values between 2.0 and 6.58. This reference catalogue served as the basis for the development of magnitude conversion equations between MW and other magnitude scales: ML, body-wave magnitude mb, and surface-wave magnitude MS. The conversions were evaluated using general orthogonal regression (GOR), which accounts for measurement errors in the x and y variables, and provides a unique solution that can be used interchangeably between magnitude types. The impact of the derived magnitude conversion equations on seismic hazard is explored by generating synthetic earthquake catalogues and computing seismic hazard level at an arbitrary site. The results indicate that we may expect up to 20-40% reduction in PGA hazard, depending on the selection and application process of the magnitude conversion equations. Abstract submitted to and presented at the 2017 Australian Earthquake Engineering Society (AEES) Conference