Environmental Management
Type of resources
Keywords
Publication year
Topics
-
The National Geochemical Survey of Australia (<a href="http://www.ga.gov.au/ngsa" title="NGSA website" target="_blank">NGSA</a>) is Australia’s only internally consistent, continental-scale <a href="http://dx.doi.org/10.11636/Record.2011.020" title="NGSA geochemical atlas and dataset" target="_blank">geochemical atlas and dataset</a>. The present dataset contains additional mineralogical data obtained on NGSA samples selected from the Darling-Curnamona-Delamerian (<a href="https://www.ga.gov.au/eftf/projects/darling-curnamona-delamerian" title="DCD website" target="_blank">DCD</a>) region of southeastern Australia for the first partial data release of the Heavy Mineral Map of Australia (HMMA) project. The HMMA, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (<a href="https://www.ga.gov.au/eftf" title="EFTF website" target="_blank">EFTF</a>) program. The selected 223 NGSA sediment samples fall within the DCD polygon plus an approximately one-degree buffer. The samples were taken on average from 60 to 80 cm depth in floodplain landforms, dried and sieved to a 75-430 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity >2.9 g/cm<sup>3</sup>) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified over 140 different HMs in the DCD area. The dataset, consisting of over 29 million individual mineral grains identified, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using an online, bespoke mineral network analysis tool (<a href="https://geoscienceaustralia.shinyapps.io/mna4hm/" title="MNA website" target="_blank">MNA</a>) built on a cloud-based platform. Accompanying this report are a data file of TIMA results and a mineralogy vocabulary file. When completed in 2023, it is hoped the HMMA project will positively impact mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.
-
This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The South Nicholson Basin is a Mesoproterozoic sedimentary basin spanning Queensland and the Northern Territory and is bordered by neighbouring provinces and basins. The basin unconformably overlies the Lawn Hill Platform of the Mount Isa Province to the east, is bound by the Warramunga and Davenport provinces to the south-west, the Murphy Province to the north and the McArthur Basin to the north-west. It extends southwards under younger cover sequences. Rock units in the basin are correlated with the Roper Group in the McArthur Basin, forming the 'Roper Superbasin.' The underlying Mount Isa Province contains potential shale gas resources. The basin mainly consists of sandstone- and siltstone-bearing units, including the South Nicholson Group, with a prevailing east to east-northeast structural grain. Mild deformation includes shallowly plunging fold axes and numerous faults along a north-west to south-east shortening direction. Major geological events affecting the South Nicholson Basin region include the formation of the Murphy Province's metamorphic and igneous rocks around 1850 million years ago (Ma). The Mount Isa Province experienced deposition in the Leichhardt Superbasin (1800 to 1750 Ma) and Calvert Superbasin (1725 to 1690 Ma). The Isa Superbasin, with extensional growth faulting in the Carrara Sub-basin (~1640 Ma), deposited sediments from approximately 1670 to 1590 Ma. Subsequently, the South Nicholson Group was deposited around 1500 to 1430 Ma, followed by the Georgina Basin's sedimentation. The basin shows potential for sandstone-type uranium, base metals, iron ore, and petroleum resources, while unconventional shale and tight gas resources remain largely unexplored. The Constance Sandstone holds promise as a petroleum reservoir, and the Mullera Formation and Crow Formation serve as potential seals.
-
This McArthur Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The McArthur Basin, located in the north-east of the Northern Territory, is a Paleoproterozoic to Mesoproterozoic geological formation containing relatively undisturbed siliclastic and carbonate rocks, as well as minor volcanic and intrusive rocks. These sediments were primarily deposited in shallow marine environments, with some lacustrine and fluvial influences. The basin's thickness is estimated to be around 10,000 m to 12,000 m, potentially reaching 15,000 m in certain areas. It is known for hosting elements of at least two Proterozoic petroleum systems, making it a target for petroleum exploration, especially in the Beetaloo Sub-basin. Researchers have divided the McArthur Basin into five depositional packages based on similarities in age, lithofacies composition, stratigraphic position, and basin-fill geometry. These packages, listed from oldest to youngest, are the Wilton, Favenc, Glyde, Goyder, and Redback packages. The McArthur Basin is part of the broader Proterozoic basin system on the North Australian Craton, bounded by various inliers and extending under sedimentary cover in areas like the Arafura, Georgina, and Carpentaria basins. It is divided into northern and southern sections by the Urapunga Fault Zone, with significant structural features being the Walker Fault Zone in the north and the Batten Fault Zone in the south. The basin's southeastern extension connects with the Isa Superbasin in Queensland, forming the world's largest lead-zinc province. Overall, the McArthur Basin is an essential geological formation with potential petroleum resources, and its division into distinct packages helps in understanding its complex stratigraphy and geological history. Additionally, its connection with other basins contributes to a broader understanding of the region's geological evolution and resource potential.
-
This Ngalia Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Ngalia Basin is an elongate, east-trending basin over 500 km long and 90 km wide. It occurs mostly in the Northern Territory, with limited occurrence in Western Australia. The Ngalia Basin is an intra-cratonic sedimentary basin in a structural downwarp formed by a faulted asymmetrical syncline. The basin began to form about 850 Ma, and contains a Neoproterozoic to Carboniferous sedimentary succession. Sedimentation ceased in response to the 450 to 300 Ma Alice Springs Orogeny. The maximum stratigraphic thickness of the Ngalia Basin is about 5000 m. The basin contains mainly arenaceous sedimentary rocks, with lesser fine-grained rock types and some carbonates. Fining upwards sedimentary cycles are commonly preserved and capped by calcite-cemented fine-grained sandstone and siltstone. Tectonic events disrupted deposition during basin evolution and led to at least ten unconformities. There are many disconformable contacts, with angular unconformities common in areas with abundant faulting. The upper-most arkosic sandstone formations in the Ngalia Basin are the Mount Eclipse Sandstone and the Kerridy Sandstone. These units have an aggregate thickness of several hundreds of metres and are the main aquifers within the Ngalia Basin sequence. There is some interstitial porosity, especially in the Mount Eclipse Sandstone, although joints and fissures associated with faulting provide significant secondary permeability. These aquifers provide good supplies of potable to brackish groundwater, and supply the community borefield at Yuendumu. The Ngalia Basin is almost entirely concealed by Cenozoic cover, including Palaeogene-Neogene palaeovalley, lake and alluvial fan sediment systems and Quaternary aeolian sands. Shallow aquifers with brackish to potable water occur in many palaeovalleys sediments overlying the basin.
-
This Lake Eyre Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Lake Eyre Basin (LEB) is a vast endorheic basin covering approximately 15% of the Australian continent, spanning about 1.14 million square kilometres. Its development began during the Late Palaeocene due to tectonic subsidence in north-eastern South Australia, resulting in a wide and shallow intra-cratonic basin divided into Tirari and Callabonna Sub-basins by the Birdsville Track Ridge. The depocenter of the LEB has shifted southwards over time. During the Cenozoic era, sediment accumulation was highest near the Queensland-Northern Territory border. The depo-center was in the southern Simpson Desert by the late Neogene, and is currently in Kati Thanda-Lake Eyre, leading to the deposition of various sedimentary formations, which provide a record of climatic and environmental changes from a wetter environment in the Palaeogene to the arid conditions of the present. The LEB is characterized by Cenozoic sediments, including sand dunes and plains in the Simpson, Strezelecki, Tirari, and Strezelecki deserts, mud-rich floodplains of rivers like Cooper, Diamantina, and Georgina, and extensive alluvial deposits in the Bulloo River catchment. The basin's geology comprises rocks from different geological provinces, ranging from Archean Gawler Craton to the Cenozoic Lake Eyre Basin. The Callabonna Sub-basin, confined by the Flinders Ranges to the west, contains formations such as the Eyre and Namba formations, representing fluvial and lacustrine environments. The Cooper Creek Palaeovalley hosts formations like the Glendower, Whitula, Doonbara, and Caldega, and features significant Quaternary sedimentary fill. The Tirari Sub-basin, located on the border regions of three states, contains formations like the Eyre, Etadunna, Mirackina, Mount Sarah Sandstone, Yardinna Claystone, Alberga Limestone, and Simpson Sand. The northwest of Queensland includes smaller Cenozoic basins, likely infilled ancient valleys or remnants of larger basins. The Marion-Noranside Basin has the Marion Formation (fluvial) and Noranside Limestone (lacustrine), while the Austral Downs Basin comprises the Austral Downs Limestone (spring and lacustrine). The Springvale and Old Cork Basins tentatively have Eocene and Miocene ages. Cenozoic palaeovalleys in the Northern Territory are filled with fluvial sands, gravels, lignites, and carbonaceous deposits and are confined by surrounding basins. Overall, the sedimentary sequences in the Lake Eyre Basin provide valuable insights into its geological history, climate shifts, and topographic changes, contributing to our understanding of the region's development over time.
-
This Karumba Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Karumba Basin is a shallow geological basin in Queensland, Australia, composed of sedimentary rocks and unconsolidated sediments that cover the Mesozoic Carpentaria Basin. Deposition started during the Late Cretaceous to Early Paleocene and has continued into the Holocene. The basin extends from western Cape York Peninsula into the Gulf of Carpentaria, where it connects with Cenozoic sediment deposits in Papua New Guinea. Although the sediments in both areas share lithostratigraphic and biostratigraphic similarities, their tectonic histories differ. The basin's structural geology is relatively uniform, with a significant downwarp known as the Gilbert-Mitchell Trough in Cape York Peninsula and another depocenter offshore in the Gulf of Carpentaria. The depositional history and stratigraphy of the Karumba Basin can be divided into three cycles of deposition, erosion, weathering, and the formation of stratigraphic units. The earliest cycle (the Bulimba Cycle) began in the Late Cretaceous to Early Paleocene, with episodes of significant uplift along the eastern margins of the basin. This resulted in the deposition of the Bulimba Formation and the Weipa Beds, primarily consisting of claystone, sandstone, conglomerate, and siltstone with minor coal layers. This cycle was followed by a period of planation and deep weathering, creating the Aurukun Surface. The second cycle (the Wyaaba Cycle) was initiated by large-scale earth movements along the Great Dividing Ranges, forming much of the eastern boundary of the Karumba Basin, and leading to the formation of the Wyaaba beds and other equivalent units. These beds consist mainly of fluvial to paralic clay-rich sandstone, conglomerate, siltstone, and claystone. In the south-west, Oligocene to Pliocene limestone deposits also formed in lacustrine settings, and were sourced from and deposited upon the underlying Georgina Basin. The cycle ended with ensuing periods of erosion and weathering and the development of the Pliocene Kendall Surface, as well as widespread basaltic volcanism. The final cycle (the Claraville Cycle) started in the Pliocene and continues to the present. It has experienced several episodes of uplift and deposition controlled by sea level change, climate variability and volcanism in the south. The Claraville beds are unconsolidated sediments, chiefly comprised of clayey quartzose sand and mud with minor gravels, reaching approximately 148 m thickness offshore, and approximately 70 m onshore. As this cycle is still ongoing, no terminal surface has been formed, and most units consist of unconsolidated surficial sediments.
-
This Eucla Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Eucla Basin, located along Australia's southern margin, covers an extensive area of approximately 1,150,000 square kilometres, housing the world's largest grouping of onshore Cenozoic marine sediments. It stretches over 2000 km from east to west and has four main subdivisions: Scaddan Embayment, Esperance Shelf, Nullarbor Shelf, and Yalata Sub-basin offshore. The basin extends about 350 km inland from the modern southern Australian coastline and terminates around 200 km offshore where it meets sediments of the Australian-Antarctic Basin. The sedimentary succession is largely consistent throughout the entire basin. In the west, it overlaps with the Yilgarn Craton and Albany-Fraser Orogen, while in the east, the Gawler Craton and Officer Basin separate it from the Musgrave Province. The basin contains mainly Cenozoic sediments, with thicker sequences in the east due to sediment movement and regional elevation differences. The onshore Eucla Basin hosts an unfaulted sheet of sediment deposited over a south-sloping shelf during several marine transgressions. The basal units rest on a prominent unconformity above the Bight Basin, indicating a break in deposition during the separation of Australia and Antarctica. The sedimentary sequence comprises various units such as the Hampton Sandstone, Pidinga Formation, and Werillup Formation, followed by the Wilson Bluff Limestone, Abrakurrie Limestone, Nullarbor Limestone, and Roe Calcarenite. The basin's geological history is marked by significant events such as marine transgressions during the Eocene, leading to the deposition of extensive limestone formations. The Miocene saw slight tilting of the basin, exposing the Nullarbor Plain to the atmosphere and limiting further sediment deposition. During the late Miocene to Pliocene, barrier and lagoonal transgressions contributed to the formation of the Roe Calcarenite. The Pliocene period witnessed intense karstification and the development of ferricrete and silcrete, resulting in the unique modern-day topography of the region.
-
This Perth Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Perth Basin is a complex geological region extending along Australia's southwest margin for about 1,300 km. It comprises sub-basins, troughs, terraces, and shelves, hosting sedimentary rocks with coal, oil, gas, and significant groundwater resources. Off the coast of Western Australia, it reaches depths of up to 4,500 m, while its onshore part extends up to 90 km inland. The basin is bounded by the Yilgarn Craton to the east, and the Carnarvon and Bremer basins to the north and south. The basin's history involves two main rifting phases in the Permian and Late Jurassic to Early Cretaceous, creating 15 sub-basins with varying sedimentary thickness due to compartmentalization and fault reactivation. The sedimentary succession mainly comprises fluviatile Permian to Early Cretaceous rocks over Archean and Proterozoic basement blocks. Differences exist between northern and southern sequences, with the south being continental and the north featuring marine deposits. During the Permian, faulting and clastic sedimentation dominated, with marine transgressions in the north and continental rocks in the south. The Triassic saw a similar pattern, with the southern succession being continental and the northern succession showing marine deposits. The Kockatea Shale became a primary hydrocarbon source. The Jurassic period witnessed marine incursions in the central basin, while the Late Jurassic experienced sea level regression and deposition of the Yarragadee Formation. The Cretaceous saw the formation of the Early Cretaceous Parmelia Group due to heavy tectonic activity. The southern basin had a marine transgression leading to the Warnbro Group's deposition with valuable groundwater resources. Post-Cretaceous, Cenozoic deposits covered the basin with varying thicknesses. Overall, the Perth Basin's geological history reveals a diverse sedimentary record with economic and resource significance.
-
Preamble: The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (http://dx.doi.org/10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Lead Isotopes Dataset. Abstract: Over 1200 new lead (Pb) isotope analyses were obtained on catchment outlet sediment samples from the NGSA regolith archive to document the range and patterns of Pb isotope ratios in the surface regolith and their relationships to geology and anthropogenic activity. The selected samples included 1204 NGSA Top Outlet Sediment (TOS) samples taken from 0 to 10 cm depth and sieved to <2 mm (or ‘coarse’ fraction); three of these were analysed in duplicate for a total of 1207 Pb isotope analyses. Further, 12 Northern Australia Geochemical Survey (NAGS; http://dx.doi.org/10.11636/Record.2019.002) TOS samples from within a single NGSA catchment, also sieved to <2 mm, were analysed to provide an indication of smaller scale variability. Combined, we thus present 1219 new TOS coarse, internally comparable data points, which underpin new national regolith Pb isoscapes. Additionally, 16 NGSA Bottom Outlet Sediment (BOS; ~60 to 80 cm depth) samples, also sieved to <2 mm, and 16 NGSA TOS samples sieved to a finer grainsize (<75 um, or ‘fine’) fraction from selected NGSA catchments were also included to inform on Pb mobility and residence. Lead isotope analyses were performed by Candan Desem as part of her PhD research at the School of Geography, Earth and Atmospheric Sciences, University of Melbourne. After an initial ammonium acetate (AmAc) leach, the samples were digested in aqua regia (AR). Although a small number of samples were analysed after the AmAc leach, all samples were analysed after the second, AR digestion, preparation step. The analyses were performed without prior matrix removal using a Nu Instruments Attom single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometer (SF-ICP-MS). The dried soil digests were redissolved in 2% HNO3 run solutions containing high-purity thallium (1 ppb Tl) and diluted to provide ~1 ppb Pb in solution. Admixture of natural, Pb-free Tl (with a nominal 205Tl/203Tl of 2.3871) allowed for correction of instrumental mass bias effects. Concentrations of matrix elements in the diluted AR digests are estimated to be in the range of 1–2 ppm. The SF-ICP-MS was operated in wet plasma mode using a Glass Expansion cyclonic spray chamber and glass nebuliser with an uptake rate of 0.33 mL/min. The instrument was tuned for maximum sensitivity and provided ~1 million counts per second/ppb Pb while maintaining flat-topped peaks. Each analysis, performed in the Attom’s ‘deflector peak jump’ mode, consists of 30 sets of 2000 sweeps of masses 202Hg, 203Tl, 204Pb, 205Tl, 206Pb, 207Pb and 208Pb, with dwell times of 500 μs and a total analysis time of 4.5 min. Each sample acquisition was preceded by a blank determination. All corrections for baseline, sample Hg interference (202Hg/204Pb ratios were always <0.043) and mass bias were performed online, producing typical in-run precisions (2 standard errors) of ±0.047 for 206Pb/204Pb, ±0.038 for 207Pb/204Pb, ±0.095 for 208Pb/204Pb, ±0.0012 for 207Pb/206Pb and ±0.0026 for 208Pb/206Pb. A small number of samples with low Pb concentrations exhibited very low signal sizes during analysis resulting in correspondingly high analytical uncertainties. Samples producing within-run uncertainties of >1% relative (measured on the 207Pb/204Pb ratio) were discarded as being insufficiently precise to contribute meaningfully to the dataset. Data quality was monitored using interspersed analyses of Tl-doped ~1 ppb solutions of the National Institute of Standards and Technology (NIST) SRM981 Pb standard, and several silicate reference materials: United States Geological Survey ‘BCR-2’ and ‘AGV-2’, Centre de Recherches Pétrographiques et Géochimiques ‘BR’ and Japan Geological Survey ‘JB-2’. In a typical session, up to 50 unknowns plus 15 standards were analysed using an ESI SC-2 DX autosampler. Although previous studies using the Attom SF-ICP-MS used sample-standard-bracketing techniques to correct for instrumental Pb mass bias, Tl doping was found to produce precise, accurate and reproducible results. Based upon the data for the BCR-2 and AGV-2 secondary reference materials, for which we have the most analyses, deviations from accepted values (accuracy) were typically <0.17%. Data for the remaining silicate standards appear slightly less accurate but these results may, to some extent, reflect uncertainty in the assigned literature values for these materials. Replicate runs of selected AR digests yielded similar reproducibility estimates. The results show a wide range of Pb isotope ratios in the NGSA (and NAGS) TOS <2 mm fraction samples across the continent (N = 1219): 206Pb/204Pb: Min = 15.558; Med ± Robust SD = 18.844 ± 0.454; Mean ± SD = 19.047 ± 1.073; Max = 30.635 207Pb/204Pb; Min = 14.358; Med ± Robust SD = 15.687 ± 0.091; Mean ± SD = 15.720 ± 0.221; Max = 18.012 208Pb/204Pb; Min = 33.558; Med ± Robust SD = 38.989 ± 0.586; Mean ± SD = 39.116 ± 1.094; Max = 48.873 207Pb/206Pb; Min = 0.5880; Med ± Robust SD = 0.8318 ± 0.0155; Mean ± SD = 0.8270 ± 0.0314; Max = 0.9847 208Pb/206Pb; Min = 1.4149; Med ± Robust SD = 2.0665 ± 0.0263; Mean ± SD = 2.0568 ± 0.0675; Max = 2.3002 These data allow the construction of the first continental-scale regolith Pb isotope maps (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb isoscapes) of Australia and can be used to understand contributions of Pb from underlying bedrock (including Pb-rich mineralisation), wind-blown dust and possibly from anthropogenic sources (industrial, transport, agriculture, residential, waste handling). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (http://dx.doi.org/10.26186/5ea8f6fd3de64). Isoscape grids (inverse distance weighting interpolated grids with a power coefficient of 2 prepared in QGis using GDAL gridding tool based on nearest neighbours) are also provided for the five Pb isotope ratios (IDW2NN.TIF files in zipped folder). Alternatively, the new Pb isotope data can be downloaded from and viewed on the GA Portal (https://portal.ga.gov.au/).
-
This Central Australian Cenozoic Basins dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. Cenozoic basins are an important source of readily accessible groundwater within the arid deserts of central Australia. This province represents a collection of six notable Cenozoic basins within the region, including the Ti Tree, Waite, Hale, Mount Wedge, Lake Lewis and Alice Farm basins. Many local communities in this region (such as Papunya, Ti Tree and Ali Curung) rely upon groundwater stored within Cenozoic basin aquifers for their water security. The basins typically contain up to several hundred metres of saturated sediments that can include relatively thick intervals of hydraulically conductive sands, silts and minor gravels. It is noted that the potential groundwater storage volumes in the Cenozoic basins are much greater than the annual amount of runoff and recharge that occurs in central Australia, making them prospective targets for groundwater development. Groundwater quality and yields are variable, although relatively good quality groundwater can be obtained at suitable yields in many areas for community water supplies, stock and domestic use and irrigated horticulture operations, for example, in the Ti Tree Basin. However, not all of the Cenozoic basins have the potential to supply good quality groundwater resources for community and horticultural supplies. With the exception of several small sub-regions, most of the Waite Basin has very little potential to supply good quality groundwater for agricultural use. This is mainly due to limited aquifer development, low yielding bores and elevated groundwater salinity (commonly >2000 mg/L Total Dissolved Solids). However, bores have been successfully installed for smaller-scale pastoral stock and domestic supplies and small communities or outstations in the Waite Basin.