From 1 - 10 / 26
  • This short video by the Geoscience Australia Education Team is targeted at primary students but is suitable for a wider audience. This video introduces the concepts of earthquake monitoring using seismometers and seismographs. It also features the National Earthquake Alert Centre. Viewers are asked to try making earthquakes at home using the accelerometers in their smartphones. For more education resources visit ga.gov.au/education.

  • Animation showing Australian Earthquakes since 1964

  • The Earthquakes@GA application can be used to find information on recent earthquakes as monitored by Geoscience Australia, search the earthquake catalogue, submit a report about an earthquake users have felt, and subscribe to notifications about earthquakes Geoscience Australia has analysed.

  • Event details, station logs and calibrations, temporary deployments, old research. 1976-2011

  • Triggered seismic data from SAHA (2004-2005) and YE6 (2004-2015). Also contains logs and calibration files.

  • Segmented time series data for earthquake events. Data are in raw digital counts and have associated instrument metadata for calibration to physical ground-motion measures. These data are used to inform a range of applications in seismic hazard assessment and for assessing the utility of current observatory practice for magnitude assessment. <b>Value: </b>Used in the selection and development of ground-motion models used for seismic hazard purposes. These data also enable the assessment and development of new earthquake magnitude formulae. <b>Scope: </b>Data has been collected on an ad hoc basis, some early digital data dates back to 1989 (i.e. Newcastle earthquake), and the dataset continues to grow as earthquakes of interest occur, or various temporary deployments are rolled out. Instrument metadata is not always known.

  • Seismic data form South Australian Network. Stations: ADE, ALV2, DNL, FR27, GHS, GHSS, GLN, GLN2, HML1, HML2, HTT, KNC, MRAT, MYP, NBK, PLMR, SDAN, STR2, TORR, UT, UTT. Date range,2006-2017, not definitive. Some logs files.

  • Scanned enquires and insurance claims requesting information about South Australian Earthquake or Seismic data for teleseismic events. 1959-1987

  • Geoscience Australia provides rapid, event-specific, earthquake information from its 24x7 earthquake information centre. Information in this service includes basic earthquake parameters (time, location and magnitude) and information about local effects including ground shaking (modelled). This includes all historic data.

  • In November, 2018 a workshop of experts sponsored by UNESCO’s Intergovernmental Oceanographic Commission was convened in Wellington, New Zealand. The meeting was organized by Working Group (WG) 1 of the Pacific Tsunami Warning System (PTWS). The meeting brought together fourteen experts from various disciplines and four different countries (New Zealand, Australia, USA and French Polynesia) and four observers from Pacific Island countries (Tonga, Fiji), with the objective of understanding the tsunami hazard posed by the Tonga-Kermadec trench, evaluating the current state of seismic and tsunami instrumentation in the region and assessing the level of readiness of at-risk populations. The meeting took place in the “Beehive” Annex to New Zealand’s Parliament building nearby the offices of the Ministry of Civil Defence and Emergency Management. The meeting was co-chaired by Mrs. Sarah-Jayne McCurrach (New Zealand) from the Ministry of Civil Defence and Emergency Management and Dr. Diego Arcas (USA) from NOAA’s Pacific Marine Environmental Laboratory. As one of the meeting objectives, the experts used their state-of-the-science knowledge of local tectonics to identify some of the potential, worst-case seismic scenarios for the Tonga-Kermadec trench. These scenarios were ranked as low, medium and high probability events by the same experts. While other non-seismic tsunamigenic scenarios were acknowledged, the level of uncertainty in the region, associated with the lack of instrumentation prevented the experts from identifying worse case scenarios for non-seismic sources. The present report synthesizes some of the findings of, and presents the seismic sources identified by the experts to pose the largest tsunami risk to nearby coastlines. In addition, workshop participants discussed existing gaps in scientific knowledge of local tectonics, including seismic and tsunami instrumentation of the trench and current level of tsunami readiness for at-risk populations, including real-time tsunami warnings. The results and conclusions of the meeting are presented in this report and some recommendations are summarized in the final section.