Cambrian
Type of resources
Keywords
Publication year
Topics
-
NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a newly discovered Proterozoic depocentre in the South Nicholson region, based on interpretation from new seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1751 m. Geoscience Australia conducted an extensive post-drilling analytical program that generated over 30 datasets which the interested reader can find under the EFTF webpage (under the "Data and publications" drop down menu) at https://www.eftf.ga.gov.au/south-nicholson-national-drilling-initiative This record links to the Exploring for the Future 'borehole completion report' for NDI Carrara 1 and access to all on-site downhole geophysical datasets.
-
The Neoproterozoic–Paleozoic Officer Basin, located in South Australia and Western Australia, remains a frontier basin for energy exploration with significant uncertainty due to a paucity of data. As part of Geoscience Australia’s Exploring for the Future (EFTF) program, the objective of this study is to derive the petrophysical properties and characterise potential reservoirs in the Neoproterozoic–Cambrian sedimentary succession in the Officer Basin through laboratory testing, and well log interpretation using both conventional and neural network methods. Laboratory measurements of forty-one legacy core samples provide the relationships between gas permeability, Klinkenberg corrected permeability, and nano-scale permeability, as well as grain density, effective and total porosity for various rock types. Conventional log interpretation generates the volume fraction of shale, effective and total porosity from gamma ray and lithology logs. Self-organising map (SOM) was used to cluster the well log data to generate petrophysical group/class index and probability profiles for different classes. Neural network technology was employed to approximate porosity and permeability from logs, conventional interpretation results and class index from SOM modelling. The Neoproterozoic-Cambrian successions have the potential to host both conventional and tight hydrocarbon reservoirs. Neoproterozoic successions are demonstrated to host mainly tight reservoirs with the range in average porosity and geometric mean permeability of 4.77%-6.39% and 0.00087-0.01307 mD, respectively, in the different sequences. The range in average porosity and geometric mean permeability of the potential Cambrian conventional reservoirs is 14.54%-26.38% and 0.341-103.68 mD, respectively. The Neoproterozoic shales have favourable sealing capacities. This work updates the knowledge of rock properties to further the evaluation of the resource potential of the Officer Basin. Published in The APPEA Journal 2022 <b>Citation:</b> Wang Liuqi, Bailey Adam H. E., Carr Lidena K., Edwards Dianne S., Khider Kamal, Anderson Jade, Boreham Christopher J., Southby Chris, Dewhurst David N., Esteban Lionel, Munday Stuart, Henson Paul A. (2022) Petrophysical characterisation of the Neoproterozoic and Cambrian successions in the Officer Basin. <i>The APPEA Journal</i><b> 62</b>, 381-399. https://doi.org/10.1071/AJ21076
-
The Neoproterozoic to Middle Ordovician sediments of the Officer Basin, Australia are difficult to correlate, in part because biostratigraphic studies of acritarchs and stromatolites are localised, isotopic studies are rare, and seismic models are technically challenged by the occurrence of basaltic and halite prone-sections. Hence, the chemostratigraphic framework presented here provides an independent stratigraphic model for the Neoproterozoic to Middle Ordovician sediments of the Officer Basin. A total of six chemostratigraphic mega-sequences have been geochemically defined and assigned to the stratigraphy; these have been further subdivided into twenty-eight chemostratigraphic sequences. The chemostratigraphic zonation has been established upon elemental changes attributed to provenance and climatic variation which can be used for correlation as they convey regional, rather than local, changes in sedimentation. The elemental data reveals that there is lateral variation within the established lithostratigraphy (e.g., within the members of the Observatory Hill and Hussar formations), which is suggestive of localised sediment source input to different areas of the basin. Presented to the 2022 Central Australian Basins Symposium IV (CABS) 29-30 August (https://agentur.eventsair.com/cabsiv/)
-
As part of the Exploring for the Future (EFTF) program, a chemostratigraphic framework for the Officer Basin was developed that correlates inorganic geochemical sequences between exploration wells. The Officer Basin spans 525,000 km<sup>2</sup> across Western Australia and South Australia, where it remains an unproven frontier basin which has seen little exploration. The objective of this study was to undertake a bulk rock elemental chemostratigraphy study on ten historic wells in order to better correlate the Neoproterozoic and Cambrian sections. Ten study wells, five from Western Australia and five from South Australia, were selected, and core (241) and cuttings (1,245) samples were acquired from their respective state core libraries. All samples were analysed using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), resulting in quantitative data for 50 elements. The approximate proportions of dolomite, clastics, halite and anhydrite for the samples were derived using stoichiometric geochemical calculations. Halite was identified in some formations based on mud log and wireline data, but was not always preserved in the cuttings samples. This non-detection of halite resulted in poor matches between the wireline gamma ray (GR) and ChemGR profiles for halite-bearing units in some wells (e.g. Dragoon-1, Mulyawara-1, and Yowalga-3). Key element and ratios utilised to subdivide the strata were principally chosen to highlight changes in sediment provenance, climatic, and organic matter changes, as they typically have the best correlation potential over a greater distance. The stratigraphy within the study wells has been subdivided into eight chemostratigraphic mega-sequences referred to as MS1 to MS8, which are further subdivided into a total of twenty-four sequences. Mega-Sequences MS1 to MS4 broadly correspond to the published Neoproterozoic–Cambrian Centralian Supersequences (CS1 to CS4). While overall there is broad agreement between these two schemes, there are also sections where the stratigraphy has been reassigned. For example, within Kutjara-1, the section previously assigned to Centralian Supersequence CS2, and equivalent to the Cryogenian Tapley Hill Formation, is assigned to Mega-Sequence MS3 (not MS2). Within MS4, the lithostratigraphically defined members of the Observatory Hill Formation show some significant variation to the chemostratigraphy, with differences occurring within sequences MS4-S3, MS4-S4 and MS4-S5 (e.g. Birksgate-1; Trainor Echo-1). Mega-Sequence MS6 encompasses the Mount Chandler Sandstone in Trainor Echo-1 in the east and the lithological lateral equivalent Lennis Sandstone in Lungkarta-1/ST1 and Yowalga-1 in the west; however, these two argillaceous sandstones are chemically distinct. Carbonate-containing samples from three wells (Birksgate-1, Yowalga-3, and Giles-1) were analysed for their δ13Ccarb and δ18Ocarb isotope signature using Isotope-Ratio Mass Spectrometry (IRMS), with results from the least altered carbonates being of sufficient quality to attempt preliminary age dating. Comparison of the Officer Basin isotope data to global type sections enabled tentative correlation of the Yowalga-3 carbonates to the Tonian and late Ediacaran, and the Birksgate-1 carbonates to the early Cambrian. The geochemistry analyses from 10 basin-wide wells provide a robust dataset that has been used to confirm which sections correlate within the existing lithostratigraphic and sequence stratigraphic framework. This study also highlights where further work needs to be undertaken to elucidate the spatial and temporal relationships of some Cryogenian and early Cambrian sections across the entire basin, given that rocks of these ages contain both potential source and reservoir rocks for petroleum generation and accumulation.
-
<div>This report brings together data and information relevant to understanding the regional geology, hydrogeology, and groundwater systems of the South Nicholson – Georgina (SNG) region in the Northern Territory and Queensland. This integrated, basin-scale hydrogeological assessment is part of Geoscience Australia’s National Groundwater Systems project in the Exploring for the Future program. While the northern Georgina Basin has been at the centre of recent investigations as part of studies into the underlying Beetaloo Sub-basin, no regional groundwater assessments have focused on central and southern parts of the Georgina Basin since the 1970s. Similarly, there has been no regional-scale hydrogeological investigation of the deeper South Nicholson Basin, although the paucity of groundwater data limited detailed assessment of the hydrogeology of this basin. This comprehensive desktop study has integrated numerous geoscience and hydrogeological datasets to develop a new whole-of-basin conceptualisation of groundwater flow systems and recharge and discharge processes within the regional unconfined aquifers of the Georgina Basin.</div><div><br></div><div>Key outputs arising from this study include: (1) the development of a hydrostratigraphic framework for the region, incorporating improved aquifer attribution for over 5,000 bores; and (2) publicly available basin-scale groundwater GIS data layers and maps, including a regional watertable map for the whole Georgina Basin. This regional assessment provides new insights into the hydrogeological characteristics and groundwater flow dynamics within the Georgina Basin, which can aid in the sustainable management of groundwater for current and future users reliant on this critical water resource.</div><div><br></div><div><br></div>