From 1 - 10 / 30
  • This animation shows how Magnetotelluric (MT) Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what magnetotelluric (MT) stations and equipment looks like what the equipment measures and how the survey works.

  • Geoscience Australia (GA), in partnership with State (SA, NSW, VIC, QLD, WA and TAS) and Northern Territory Geological Surveys, has applied the magnetotelluric (MT) technique to image the resistivity structure of the Australian continent over the last decade. Data have been acquired at nearly 5000 stations across Australia through a national MT survey program and regional MT surveys. Most of the data are available at GA’s website. These data provided valuable information for multi-disciplinary interpretations that incorporate various datasets. This release package includes ArcGIS shape files and Excel files of MT station locations for the completed AusLAMP and regional surveys up to December 2017.

  • This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.

  • The AusLAMP-Victoria magnetotelluric survey was a collaborative project between the Geological Survey of Victoria and Geoscience Australia. Long period magnetotelluric data were acquired at 100 sites on a half degree grid spacing across Victoria in the south-east of Australia between December 2013 and September 2014. Some repeated sites were acquired in December 2017. Geoscience Australia managed the project and performed data acquisition, data processing, and data QA/QC. In this record, the field acquisition, data QA/QC, and data processing methodologies are discussed. A separate report will provide information on data analysis, data modelling/inversion, and data interpretation.

  • This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.

  • <div>The Magnetotelluric (MT) Sites database contains the location of sites where magnetotelluric (MT) data have been acquired by surveys. These surveys have been undertaken by Geoscience Australia and its predecessor organisations and collaborative partners including, but not limited to, the Geological Survey of New South Wales, the Northern Territory Geological Survey, the Geological Survey of Queensland, the Geological Survey of South Australia, Mineral Resources Tasmania, the Geological Survey of Victoria and the Geological Survey of Western Australia and their parent government departments, AuScope, the University of Adelaide, Curtin University and University of Tasmania. Database development was completed as part of Exploring for the Future (EFTF) and the database will utilised for ongoing storage of site information from future MT acquisition projects beyond EFTF. Location, elevation, data acquisition date and instrument information are provided with each site. The MT Sites database is a subset of tables within the larger Geophysical Surveys and Datasets Database. </div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal&nbsp;(https://portal.ga.gov.au/), use Magnetotelluric as your search term to find the relevant data.</div>

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. As part of Exploring for the Future (EFTF) program with contributions from the Geological Survey of Queensland, long-period magnetotelluric (MT) data for the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) were collected using Geoscience Australia's LEMI-424 instruments on a half-degree grid across Queensland from April 2021 to November 2022. This survey aims to map the electrical resistivity structures in the region. These results provide additional information about the lithospheric architecture and geodynamic processes, as well as valuable precompetitive data for resource exploration in this region. This data release package includes processed MT data, a preferred 3D resistivity model projected to GDA94 MGA Zone 54 and associated information for this project. The processed MT data were stored in EDI format, which is the industry standard format defined by the Society of Exploration Geophysicists. The preferred 3D resistivity model was derived from previous EFTF AusLAMP data acquired from 2016-2019 and recently acquired AusLAMP data in Queensland. The model is in SGrid format and geo-referenced TIFF format.

  • This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.

  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric (MT) data on a half-degree grid spacing across Australia. This national scale survey aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent, which provides significant additional information about Australia’s geodynamic framework as well as valuable pre-competitive data for resource exploration. Geoscience Australia in collaboration with the Geological Survey of New South Wales (GSNSW) has completed AusLAMP data acquisition at 321 sites across the state of NSW. The data were acquired using LEMI-424 instruments and were processed using the Lemigraph software. The processed data in EDI format and report of field acquisition, data QA/QC, and data processing have been released in 2020 (https://pid.geoscience.gov.au/dataset/ga/132148). This data release contains acquired time series data at each site in two formats: 1. MTH5, a hierarchical data format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded LEMI data into MTH5 format. 2. Text file (*.TXT). This is the original format recorded by the LEMI-424 data logger. We acknowledge the traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected. <b>Data is available on request from clientservices@ga.gov.au - Quote eCat# 148544</b>

  • Magnetotelluric (MT) data allow geoscientists to investigate the link between mineralisation and lithospheric-scale features and processes. In particular, the highly conductive structures imaged by MT data appear to map the pathways of large-scale palaeo-fluid migration, which is an important element of several mineral systems. New data were collected as part of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) under Geoscience Australia Exploring for the Future (EFTF) program in northern Australian. We use this dataset to demonstrate that the MT method is a valuable tool for mapping lithospheric-scale features and for selecting prospective areas for mineral exploration. Our results image a number of major conductive structures at depths up to ~200 km or deeper in the survey region, for example, the Carpentaria Conductivity Anomaly in east of Mount Isa; and the Tanami Conductive Anomaly along the Willowra Suture Zone. These significant anomalies are lithospheric- scale highly conductive structures, and show spatial correlations with major suture zones and known mineral deposits. These results provide important first-order information for lithospheric architecture and possible large footprint of mineral systems. Large-scale crustal/mantle conductivity anomalies mapping fluid pathways associated with major sutures/faults may have implications for mineral potential. These results provide evidence that some mineralisation occurs at the gradient of or over highly conductive structures at lower crustal and lithospheric mantle depths. These observations provide a powerful means of highlighting greenfields for mineral exploration in under-explored and covered regions.