rock
Type of resources
Keywords
Publication year
Service types
Topics
-
During an inspection of limestone deposits at White Rocks on 2/11/50, samples of weathered granite were collected from a quarry on the eastern side of the Queanbeyan-Cooma road, about 150 yards south of the two-mile peg. This quarry is in the Queanbeyan Clay Deposit described by W.G. Woolnough in departmental reports dated 17/2/28 and 20/6/28. If the rock can be economically crushed and worked, it may be suitable for the production of sewer-pipes and other impervious ware. The samples, reserves, and suitable uses for the granite are described in this report.
-
The beach sands on which investigations were carried out, were mainly from beaches along the eastern coast of Australia and from islands adjacent to this coast. A high percentage of the mineral grains of the heavy mineral fraction in these sands have grain sizes within the range -100 to +200, referred to British Standard Sieves. The grain size of the minerals, combined with the fact that the grains are quite well rounded, makes the heavy mineral sands an ideal subject for separation using the inclined method with the Isodynamic Separator. The use of this method, and the results obtained, are described in this report.
-
Like many of the basins along Australia's eastern seaboard, there is currently only a limited understanding of the geothermal energy potential of the New South Wales extent of the Clarence-Moreton Basin. To date, no study has examined the existing geological information available to produce an estimate of subsurface temperatures throughout the region. Forward modelling of a basin structure using its expected thermal properties is the process generally used in geothermal studies to estimate temperatures at depth in the Earth's crust. This process has been validated for one-dimensional models such as a drill hole, where extensive information can be provided for a specific location. The process has also seen increasing use in more complex three-dimensional (3D) models, including in areas of sparse data. The overall uncertainties of 3D models, including the influence of the broad assumptions required to undertake them, are generally only poorly examined by their authors and sometimes completely ignored. New methods are presented in this study which will allow estimates and uncertainties to be addressed in a quantitative and justifiable way. Specifically, this study applies Monte Carlo Analysis to constrain uncertainties through random sampling of statistically congruent populations. Particular focus has been placed on the uncertainty in assigning thermal conductivity values to complex and spatially extensive geological formations using only limited data. These geological formations will typically consist of a range of lithological compositions, resulting in a range of spatially variable thermal conductivity values. As a case study these new methods are then applied to the New South Wales extent of the Clarence-Moreton Basin. The structure of the basin has been built using Intrepid Geophysics' 3D GeoModeller software package using data from existing petroleum drill holes, surface mapping and information derived from the FrOGTech SEEBASE study. A range of possible lithological compositions was determined for each of the major geological layers through application of compositional data analysis, using data from deep wells only (>2000 m). In turn, a range of possible thermal properties was determined from rock samples held by the New South Wales Department of Primary Industries and analysed at the Geoscience Australia laboratories. These populations of values were then randomly sampled to create 120 different forward models which were computed using SHEMAT. The results of these have been interpreted to present the best estimate of the expected subsurface temperatures of the basin, and their uncertainties, given the current state of knowledge. These results suggest that the Clarence-Moreton Basin has a moderate geothermal energy potential within an economic drilling depth. The results also show a significant degree of variability between the different thermal modelling runs, which is likely due to the limited data available for the region.
-
A deposit of weathered graphic granite at White Rocks, 2 miles south of Queanbeyan, was investigated and the limits of material in it suitable for easily quarryable road metal were determined. The area was divided into two sections: a northern one held for the most part by the Queanbeyan Council, and a southern section at present held privately as a grazing lease. "Indicated" reserves, based on the present quarrying level, of 170,000 cub. yds were established in the northern section. Most of this material will be of the same quality as that being quarried at present; some of the material towards the southern boundary of the lease will however be harder and require more blasting. In the grazing leases "inferred reserves" of 140,000 cub. yds. were delineated. It is expected that this material will be quite suitable for road making but may be slightly inferior in sizing to the material at present being quarried; also it may require more blasting in some portions than the material being quarried at present; it will carry a higher average overburden than the Queanbeyan lease.
-
Rock properties provide the vital link between observed geophysical data and interpreted geology. Geoscience Australia has periodically made measurements of rock properties to support various investigations into the composition and structure of the subsurface. The Rock Properties Project consolidates this information into a single database structure and makes it accessible to external clients via a web delivery application. We have chosen to initially concentrate on mass density and magnetic properties, as these are of prime importance to the important gravity and magnetic datasets maintained for the Australian region by Geoscience Australia. Additional property types and more extensive datasets will be added over time.
-
This OGC WFS web service (generated by Geoserver) serves data from the Geoscience Australia Rock Properties database. The database stores the results of measurements of physical properties of rock and regolith specimens, including such properties as mass density, magnetic susceptibility, magnetic remanence and electrical conductivity. The database also records analytical process information such as method and instrument details where possible.
-
The Geoscience Australia Rock Properties database stores the results measurements of scalar and vector petrophysical properties of rock and regolith specimens. Many are sourced from Geoscience Australia's mapping and research programs, but some are are compiled from published literature, university studies, the resources industry and State/Territory geological surveys. Measured properties include mass density, magnetic susceptibility, magnetic remanence, gamma, electrical conductivity and sonic velocity. The database also records analytical process information such as methods and instrument details wherever possible.
-
Major oxides provide valuable information about the composition, origin, and properties of rocks and regolith. Analysing major oxides contributes significantly to understanding the nature of geological materials and processes (i.e. physical and chemical weathering) – with potential applications in resource exploration, engineering, environmental assessments, agriculture, and other fields. Traditionally most measurements of oxide concentrations are obtained by laboratory assay, often using X-ray fluorescence, on rock or regolith samples. To expand beyond the point measurements of the geochemical data, we have used a machine learning approach to produce seamless national scale grids for each of the major oxides. This approach builds predictive models by learning relationships between the site measurements of an oxide concentration (sourced from Geoscience Australia’s OZCHEM database and selected sites from state survey databases) and a comprehensive library of covariates (features). These covariates include: terrain derivatives; climate surfaces; geological maps; gamma-ray radiometric, magnetic, and gravity grids; and satellite imagery. This approach is used to derive national predictions for 10 major oxide concentrations at the resolution of the covariates (nominally 80 m). The models include the oxides of silicon (SiO2), aluminium (Al2O3), iron (Fe2O3tot), calcium (CaO), magnesium (MgO), manganese (MnO), potassium (K2O), sodium (Na2O), titanium (TiO2), and phosphorus (P2O5). The grids of oxide concentrations provided include the median of multiple models run as the prediction, and lower and upper (5th and 95th) percentiles as measures of the prediction’s uncertainty. Higher uncertainties correlate with greater spreads of model values. Differences in the features used in the model compared with the full feature space covering the entire continent are captured in the ‘covariate shift’ map. High values in the shift model can indicate higher potential uncertainty or unreliability of the model prediction. Users therefore need to be mindful, when interpreting this dataset, of the uncertainties shown by the 5th-95th percentiles, and high values in the covariate shift map. Details of the modelling approach, model uncertainties and datasets are describe in an attached word document “Model approach uncertainties”. This work is part of Geoscience Australia’s Exploring for the Future program that provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. These data are published with the permission of the CEO, Geoscience Australia.
-
The boring campaign carried out during 1950 by the Petroleum Technology section of the Bureau proved the existence over an area of 25 square miles in the Oaklands-Coorabin coalfield of approximately 793,000,000 tons of coal with an average calorific value of 9150 B.Th.U. per 1b. Thickness of the coal intersected in the bores ranged from 18 to 59 feet and depth to the coal from 186 to 565 feet. This report comprises detailed coal analyses, notes on the geological results, and recommendations for future boring.
-
The Crater Line consists of a series of rock exposures outcropping in an arcuate pattern around the southwestern flank of the Rum Jungle granite. The exposed rocks are believed to represent part of the Brocks Creek group of Lower Proterozoic age. The Crater formation, the major mappable unit in the line of exposures, consists of metamorphosed clastic rocks totalling approximately 1500 feet in thickness. Significant radioactivity is restricted to three stratigraphic zones within the Crater formation. These have been mapped and are designate Crater Pebble Beds, Number One Pebble Bed, and Number Two Pebble Bed. Number One Pebble Bed appears to contain the most significant anomalies. The radioactivity is restricted to conglomerate beds. There may be a genetic relationship to the greater permeability formerly localized in the conglomeratic zones. The radioactivity is not localized by tectonic structures such as folds, faults, or changes in dip. No source of the radioactivity has been identified. The radioactivity probably emanates from members of the uranium disintegration series. Four areas containing significant anomalies and deserving further investigation were found along the Crater Line.