From 1 - 10 / 17
  • The National Onshore Oil Pipelines dataset presents the spatial locations of pipelines for the transmission of petroleum oil within mainland Australia complimented with feature attribution.

  • <div>GeoInsight was an 18-month pilot project developed in the latter part of Geoscience Australia’s Exploring for the Future Program (2016–2024). The aim of this pilot was to develop a new approach to communicating geological information to non-technical audiences, that is, non-geoscience professionals. The pilot was developed using a human-centred design approach in which user needs were forefront considerations. Interviews and testing found that users wanted a simple and fast, plain-language experience which provided basic information and provided pathways for further research. GeoInsight’s vision is to be an accessible experience that curates information and data from across Geoscience Australia, helping users make decisions and refine their research approach, quickly and confidently.</div><div><br></div><div>In the first iteration of GeoInsight, selected products for energy, minerals, water, and complementary information from Geoscience Australia’s Data Discovery Portal and Data and Publications Catalogue were examined to (1) gauge the relevance of the information they contain for non-geoscientists and, (2) determine how best to deliver this information for effective use by non-technical audiences.</div><div><br></div><div>This Record documents the technical details of the methods used for summarising energy commodities for GeoInsight. These methods were devised to convey current production and future production/extraction potential quickly and efficiently for regions across the Australian continent. Evaluated energy commodities include oil and gas, hydrogen and geological hydrogen storage, uranium and thorium, coal (black and brown), geothermal energy, and renewable energy. Carbon storage, a decarbonisation enabler, was also addressed under the energy theme.</div><div><br></div><div>This document contains two sections:</div><div><strong>Production Summary:</strong> To showcase where energy resources are being produced in different regions of Australia. The source datasets provide a snapshot of energy production activities at the time of publication. </div><div><strong>Potential Summary:</strong> To highlight, at first glance, the likelihood that future energy production and decarbonisation initiatives may occur in different regions of Australia. The source datasets provide a snapshot of future energy potential at the time of publication.</div><div><br></div><div>Any updates to the methodology used in GeoInsight will be accompanied by updates to this document, including a change log.</div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div>

  • This point dataset contains offshore Oil and Gas Platforms located in Australian waters that include infrastructure facilities for the extraction, processing and/or storage of oil and natural gas.

  • <div>Australia’s Energy Commodity Resources (AECR) provides estimates of Australia’s energy commodity reserves, resources, and production as at the end of 2021. The 2023 edition of AECR also includes previously unpublished energy commodity resource estimates data compiled by Geoscience Australia for the 2021 reporting period. The AECR energy commodity resource estimates are based primarily on published open file data and aggregated (de identified) confidential data. The assessment provides a baseline for the production and remaining recoverable resources of gas, oil, coal, uranium and thorium in Australia, and the global significance of our nation’s energy commodity resources.</div>

  • The Oil and Gas Pipelines service contains known spatial locations of onshore and offshore pipelines or pipeline corridors used to transport natural gas, oil and other liquids within Australia’s mainland and territorial waters.

  • The Oil and Gas Pipelines service contains known spatial locations of onshore and offshore pipelines or pipeline corridors used to transport natural gas, oil and other liquids within Australia’s mainland and territorial waters.

  • The Oil and Gas Pipelines service contains known spatial locations of onshore and offshore pipelines or pipeline corridors used to transport natural gas, oil and other liquids within Australia’s mainland and territorial waters.

  • Late Devonian mass extinctions attributed to extensive anoxia and/or euxinia of the oceans are associated with widespread deposition of organic-rich shales. Also in the epeiric waters of the Canning Basin (Western Australia), photic zone euxinia (PZE) prevailed during the Givetian–Frasnian, with geochemical evidence for PZE on the northern (Lennard Shelf)–, and southern (Barbwire Terrace) margins of the Fitzroy Trough. On the Lennard Shelf, shales record episodic pulses of PZE associated with high algal activity due to enhanced nutrient supply, whereas a restricted marine setting on the Barbwire Terrace is thought to be the main driver for the development of persistent PZE and associated bacterial predominance. Structural evidence indicates that the Fitzroy Trough was a confined basin during the Late Devonian with the possibility of limited ocean circulation. Widespread PZE is expected to have developed in the poorly mixed water column, if the basin received sufficient nutrient supply for enhanced primary production. Notwithstanding the presence of anoxia during deposition of potential source rocks, only two small Devonian-sourced oil fields and numerous oil shows have been found in the Canning Basin. Biomarker assemblages show that the oils produced from the Lennard Shelf fields (i.e. Blina-1, Blina-4 and Janpam North-1) have substantially different molecular compositions to the minor oil recovered from Mirbelia-1 on the Barbwire Terrace. A correlation was established between the Lennard Shelf oils and rock extracts from the Gogo Formation at Blina-1 and McWhae Ridge-1 based on their hopane, sterane and carotenoids abundances. A definitive source correlation was not obtained for the Mirbelia-1 oil, but it did show some genetic affinity to the Givetian–Frasnian extracts from the Barbwire Terrace, suggesting that local source rocks are developed in the region. <b>Citation:</b> Gemma Spaak, Dianne S. Edwards, Heidi J. Allen, Hendrik Grotheer, Roger E. Summons, Marco J.L. Coolen, Kliti Grice, Extent and persistence of photic zone euxinia in Middle–Late Devonian seas – Insights from the Canning Basin and implications for petroleum source rock formation, <i>Marine and Petroleum Geology</i>, Volume 93, 2018, Pages 33-56, ISSN 0264-8172, https://doi.org/10.1016/j.marpetgeo.2018.02.033.

  • <p>A geochemical study was conducted to establish oil-oil correlations and evaluate potential source rocks within the latest Devonian–earliest Carboniferous succession of the onshore Canning Basin, Western Australia. Aromatic hydrocarbons, together with the routinely used saturated biomarker ratios and stable carbon isotopes, demonstrate that the recently discovered Ungani oilfield located on the southern margin of the Fitzroy Trough are similar, but not identical, to the early Carboniferous Larapintine 4 (L4) oil family present to the north of the Fitzroy Trough on the Lennard Shelf. The L4 oil family has been correlated to a lower Carboniferous (Tournaisian) source rock core sample from the Laurel Formation at Blackstone-1 although its bulk geochemical properties signify that it could generate substantially more gas than liquid hydrocarbons. <p>The Ungani oils can be distinguished from the L4 oils by their higher concentrations of paleorenieratane and isorenieratane, coupled with more depleted &delta;<sup>13</sup>C values for n-alkanes, pristane and phytane compared with other components. Hopane isomerisation ratios show distinct grouping of the two oil families that reflect both source and maturity variations. The oil from Wattle-1 ST1 on the Lennard Shelf also has an unusual composition, exhibiting some molecular and isotopic features similar to both the L4 and Ungani oils. Source rocks for the Ungani and Wattle-1 ST1 oils are unknown since their geochemical signature does not match that of the Tournaisian Laurel Formation or the Middle−Upper (Givetian–Frasnian) Devonian Gogo Formation which sourced the Devonian-reservoired Larapintine 3 oils at Blina and Janpam North-1. It is postulated that such potential oil-prone source rocks could occur within the Famennian–Tournaisian succession. <b>Citation:</b> Gemma Spaak, Dianne S. Edwards, Clinton B. Foster, Andrew Murray, Neil Sherwood, Kliti Grice, Geochemical characteristics of early Carboniferous petroleum systems in Western Australia,<i> Marine and Petroleum Geology</i>, Volume 113, 2020, 104073, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2019.104073

  • This web service delivers data from an aggregation of sources, including several Geoscience Australia databases (provinces (PROVS), mineral resources (OZMIN), energy systems (AERA, ENERGY_SYSTEMS) and water (HYDROGEOLOGY). Information is grouped based on a modified version of the Australian Bureau of Statistics (ABS) 2021 Indigenous Regions (IREG). Data covers population centres, top industries, a regional summary, groundwater resources and uses, energy production and potential across six sources and two energy storage options. Mineral production and potential covers 36 commodities that are grouped into 13 groups.