Earth Observations
Type of resources
Keywords
Publication year
Distribution Formats
Scale
Topics
-
This collection is used to provide an environment for external access to the Australian Geoscience Data Cube Virtual Desktop Interface (VDI).
-
This collection contains raw and ancillary information used to generate Geoscience Australia data products.
-
B6/B5 (potential includes: pyrophyllite, alunite, well-ordered kaolinite) Blue is low content, Red is high content Useful for mapping: (1) different clay-type stratigraphic horizons; (2) lithology-overprinting hydrothermal alteration, e.g. high sulphidation, "advanced argillic" alteration comprising pyrophyllite, alunite, kaolinite/dickite; and (3) well-ordered kaolinite (warmer colours) versus poorly-ordered kaolinite (cooler colours) which can be used for mapping in situ versus transported materials, respectively.
-
This collection contains processing environments for use by external users of the Australian Geoscience Data Cube (AGDC).
-
1. Band ratio: B1/B4 Blue is low abundance, Red is high abundance (potentially includes carbon black (e.g. ash), magnetite, Mn oxides, and sulphides in unoxidised envornments Useful for mapping: (1) magnetite-bearing rocks (e.g. BIF); (2) maghemite gravels; (3) manganese oxides; (4) graphitic shales. Note 1: (1) and (4) above can be evidence for "reduced" rocks when interpreting REDOX gradients. Combine with AlOH group Content (high values) and Composition (high values) products, to find evidence for any invading "oxidised" hydrothermal fluids which may have interacted with reduced rocks evident in the Opaques index product.
-
1. Band ratio: B5/B7 Blue is well ordered kaolinite, Al-rich muscovite/illite, paragonite, pyrophyllite Red is Al-poor (Si-rich) muscovite (phengite) useful for mapping: (1) exposed saprolite/saprock is often white mica or Al-smectite (warmer colours) whereas transported materials are often kaolin-rich (cooler colours); (2) clays developed over carbonates, especially Al-smectite (montmorillonite, beidellite) will produce middle to warmers colours. (2) stratigraphic mapping based on different clay-types; and (3) lithology-overprinting hydrothermal alteration, e.g. Si-rich and K-rich phengitic mica (warmer colours). Combine with Ferrous iron in MgOH and FeOH content products to look for evidence of overlapping/juxtaposed potassic metasomatism in ferromagnesian parents rocks (e.g. Archaean greenstone associated Au mineralisation) +/- associated distal propyllitic alteration (e.g. chlorite, amphibole).
-
1. Band ratio: (B5+B7)/B6 Blue is low abundance, Red is high abundance potentially includes: phengite, muscovite, paragonite, lepidolite, illite, brammalite, montmorillonite, beidellite, kaolinite, dickite Useful for mapping: (1) exposed saprolite/saprock (2) clay-rich stratigraphic horizons; (3) lithology-overprinting hydrothermal phyllic (e.g. white mica) alteration; and (4) clay-rich diluents in ore systems (e.g. clay in iron ore). Also combine with AlOH composition to help map: (1) exposed in situ parent material persisting through "cover" which can be expressed as: (a) more abundant AlOH content + (b) long-wavelength (warmer colour) AlOH composition (e.g. muscovite/phengite).
-
1. Band ratio: B13/B10 Blue is low silica content Red is high silica content (potentially includes Si-rich minerals, such as quartz, feldspars, Al-clays) Geoscience Applications: Broadly equates to the silica content though the intensity (depth) of this reststrahlen feature is also affected by particle size <250 micron. Useful product for mapping: (1) colluvial/alluvial materials; (2) silica-rich (quartz) sediments (e.g. quartzites); (3) silification and silcretes; and (4) quartz veins. Use in combination with quartz index, which is often correlated with the Silica index.
-
This collection contains satellite imagery or Earth Observations from space created by Geoscience Australia. Among others, the collection includes data from various satellite sensors including Landsat Thematic Mapper and Multi-Spectral Scanner, Terra and Aqua MODIS.
-
1. Band ratio: B5/B4 Blue is low ferrous iron content in carbonate and MgOH minerals like talc and tremolite. Red is high ferrous iron content in carbonate and MgOH minerals like chlorite and actinolite. Useful for mapping: (1) un-oxidised "parent rocks" - i.e. mapping exposed parent rock materials (warm colours) in transported cover; (2) talc/tremolite (Mg-rich - cool colours) versus actinolite (Fe-rich - warm colours); (3) ferrous-bearing carbonates (warm colours) potentially associated with metasomatic "alteration"; (4) calcite/dolomite which are ferrous iron-poor (cool colours); and (5) epidote, which is ferrous iron poor (cool colours) - in combination with FeOH content product (high).