From 1 - 10 / 39
  • This collection contains Earth Observations from space created by Geoscience Australia. This collection specifically is focused on optical data. Example products include: Landsat NBAR Surface Reflectance, and Landsat pixel quality, etc.

  • This collection contains Earth Observations from space created by Geoscience Australia. This collection specifically is focused on data and derived data from the European Commission's Copernicus Programme. Example products include: Sentinel-1-CSAR-SLC, Sentinel-2-MSI-L1C, Sentinel-3-OLCI etc.

  • B6/B5 (potential includes: pyrophyllite, alunite, well-ordered kaolinite) Blue is low content, Red is high content Useful for mapping: (1) different clay-type stratigraphic horizons; (2) lithology-overprinting hydrothermal alteration, e.g. high sulphidation, "advanced argillic" alteration comprising pyrophyllite, alunite, kaolinite/dickite; and (3) well-ordered kaolinite (warmer colours) versus poorly-ordered kaolinite (cooler colours) which can be used for mapping in situ versus transported materials, respectively.

  • 1. Band ratio: B5/B4 Blue is low ferrous iron content in carbonate and MgOH minerals like talc and tremolite. Red is high ferrous iron content in carbonate and MgOH minerals like chlorite and actinolite. Useful for mapping: (1) un-oxidised "parent rocks" - i.e. mapping exposed parent rock materials (warm colours) in transported cover; (2) talc/tremolite (Mg-rich - cool colours) versus actinolite (Fe-rich - warm colours); (3) ferrous-bearing carbonates (warm colours) potentially associated with metasomatic "alteration"; (4) calcite/dolomite which are ferrous iron-poor (cool colours); and (5) epidote, which is ferrous iron poor (cool colours) - in combination with FeOH content product (high).

  • 1. Band ratio: B2/B1 Blue-cyan is goethite rich, Green is hematite-goethite, Red-yellow is hematite-rich (1) Mapping transported materials (including palaeochannels) characterised by hematite (relative to geothite). Combine with AlOH composition to find co-located areas of hematite and poorly ordered kaolin to map transported materials; and (2) hematite-rish areas in drier conditions (eg above the water table) whereas goethite-rich in wetter conditions (eg at/below the water or areas recently exposed). May also be climate driven.

  • This collection contains processing environments for use by external users of the Australian Geoscience Data Cube (AGDC).

  • This is the parent datafile of a dataset that comprises a set of 14+ geoscience products made up of mosaiced ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) scenes across Australia. The individual geoscience products are a combination of bands and band ratios to highlight different mineral groups and parameters including: False colour composite CSIRO Landsat TM Regolith Ratios Green vegetation content Ferric oxide content Ferric oxide composition Ferrous iron index Opaque index AlOH group content AlOH group composition Kaolin group index FeOH group content MgOH group content MgOH group composition Ferrous iron content in MgOH/carbonate Surface mineral group distribution (relative abundance and composition)

  • This collection contains Earth Observations from space created by Geoscience Australia. This collection specifically is focused on RADAR and Synthetic Aperture Radar (SAR) data. Example products include: ALOS SLC, ENVISAT raw etc.

  • This collection contains Earth Observations from space created by Geoscience Australia. This collection specifically is focused on derived or value-added products. Example products include: Fractional Cover (FC), Australian Geographic Reference Image (AGRI), and InterTidal Extents Model (ITEM) etc.

  • 1. Band ratio: (B6+B8)/B7 Blue is low content, Red is high content (potentially includes: chlorite, epidote, jarosite, nontronite, gibbsite, gypsum, opal-chalcedony) Useful for mapping: (1) jarosite (acid conditions) - in combination with ferric oxide content (high); (2) gypsum/gibbsite - in combination with ferric oxide content (low); (3) magnesite - in combination with ferric oxide content (low) and MgOH content (moderate-high) (4) chlorite (e.g. propyllitic alteration) - in combination with Ferrous in MgOH (high); and (5) epidote (calc-silicate alteration) - in combination with Ferrous in MgOH (low).