From 1 - 7 / 7
  • The Upper Burdekin Basalt extents web service delivers province extents, detailed geology, spring locations and inferred regional groundwater contours for the formations of the Nulla and McBride Basalts. This work has been carried out as part of Geoscience Australia's Exploring for the Future program.

  • The Upper Burdekin Basalt extents web service delivers province extents, detailed geology, spring locations and inferred regional groundwater contours for the formations of the Nulla and McBride Basalts. This work has been carried out as part of Geoscience Australia's Exploring for the Future program.

  • <div>Australia is the driest inhabited continent on Earth and groundwater is crucial to maintaining the country’s population, economic activities, Indigenous culture and environmental values. Geoscience Australia is renewing a national-scale focus to tackle hydrogeological challenges by building upon our historic legacy in groundwater studies at regional and national scales.</div><div><br></div><div>The most comprehensive hydrogeological coverage of the nation is the 1987 Hydrogeology of Australia map, developed by a predecessor of Geoscience Australia. This map provides an overview of groundwater systems and principal aquifers across Australia, based upon the large sedimentary basins, intervening fractured rock areas and smaller overlying sedimentary/volcanic aquifers. However, the currency and completeness of the information presented and accompanying the national hydrogeology map needs to be improved. Updating the extents, data and scientific understanding of the hydrogeological regions across Australia, and improving the accessibility and useability of this information will address many of its current limitations.</div><div><br></div><div>Geoscience Australia, within its Exploring for the Future program, is compiling hydrogeological and related contextual information clearly and consistently across Australia’s major sedimentary basins and intervening fractured rock provinces. This information has been collected for 41 major hydrogeological regions spanning the continent: 36 sedimentary basins and 5 regions dominated by fractured-rock aquifers. The information, collected through a combination of geospatial analyses of national datasets and high-level summaries of scientific literature, will be presented through Geoscience Australia’s online data discovery portal, thereby enabling improved interrogation and integration with other web mapping services.</div><div><br></div><div>The new compilation of nationally consistent groundwater data and information will help to prioritise future investment for new groundwater research in specific regions or basins, inform the work programs of Geoscience Australia and influence the prioritisation of national hydrogeological research more broadly.&nbsp;</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • This Record presents new Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronological results for samples collected from the Mary Kathleen Domain, which forms the western part of the Eastern Fold Belt in the Mount Isa Inlier. Eight samples, comprising three granites, one quartz diorite, two metarhyolites, one feldspathic quartzite, and one of matrix material from a breccia, have been analysed as part of ongoing investigations by GSQ in collaboration with researchers from James Cook University. The results enable a better understanding of the evolution of the domain, the associated magmatism, and any related mineralisation. <b>Bibliographic Reference:</b> Kositcin, N., Bultitude, R.J., and Purdy, D.J. Summary of Results. Joint GSQ–GA Geochronology Project: Mary Kathleen Domain, Mount Isa Inlier, 2018–2019. <i>Queensland Geological Record</i><b> 2019/02</b>.

  • Archive of the data and outputs from the Assessment of Tropical Cyclone Risk in the Pacific Region project. See GA record 76213.

  • An important finding of this study is the presence of Williams-Naraku Batholith ages (i.e. ca 1500 Ma) east and (well) north of the currently known extent. Sample 2804770/DPMI013 is a leucocratic biotite granite collected from unnamed unit PLg/k ca 30 km southwest of Burke and Wills Roadhouse at the far northern outcropping extent of the Mary Kathleen Domain. This unit intrudes the Corella Formation and Boomarra Metamorphics as small pods and dykes that likely represent the upper portions of a larger pluton. The results from this sample are complex but indicate a minimum crystallisation age of 1500 ± 6 Ma. This is within error of units assigned to the Williams and Naraku Batholiths (e.g. Mavis Granodiorite, Malakoff Granite, Wimberu Granite – see geochronology compilation of Jones et al., 2018). A similar but more certain age of 1511 ± 4 Ma was determined for an unnamed amphibole granite farther south near Kajabbi (2804772/DPMI049b). It is likely that this intrusion also represents the upper parts of a pluton that is more extensive at depth. Together, these two new ages greatly expand the known extent of magmatism at ca 1500 Ma. The Mount Godkin Granite forms a prominent, topographically high range ca 45km northwest of Cloncurry. It intrudes the Corella Formation and has a distinct ellipsoid mapped extent. On the basis of geochemistry, Budd et al. (2001) included the Mount Godkin Granite in the Burstall Suite. The crystallisation age reported here (1739 ± 3 Ma) for sample 2804771/DPMI041 is within error of the most recent published ages from the Burstall Granite and Lunch Creek Gabbro (i.e. 1740 ± 3 Ma, 1737 ± 3 Ma, 1739 ± 3 Ma; Neumann et al., 2009) confirming broadly synchronous emplacement. We also sampled a fine-grained, leucocratic and miarolitic biotite granite from the far northern tip of the Burstall Granite (mapped as subunit l). Despite being lithologically and texturally distinct from the main body of Burstall Granite, this sample (2804773/DPMI054) yielded a similar crystallisation age (1736 ± 4 Ma) to the main Burstall Granite and Lunch Creek Gabbro bodies (Neumann et al., 2009). A lithologically similar, unfoliated, miarolitic leucogranite was sampled from Exco Resources drill core EMCDD094 (534.85–536.07 m) at Mount Colin mine near the contact between the Burstall Granite and Corella Formation. In drill core, this granite contains large xenoliths of Corella Formation and locally transitions to a crystallised hydrothermal phase. It appears intimately associated with copper mineralisation and the crystallisation age of 1737 ± 3 Ma determined here (2804792/DPMI080) may be similar to the mineralisation age. The Myubee Igneous Complex and Overlander Granite intrude the Corella Formation in the southern part of the Mary Kathleen Domain. They were thought to have been emplaced at about the same time as the nearby Revenue Granite, the Mount Erle Igneous Complex farther south, and the Burstall Granite to the north, based on lithological and chemical similarities (e.g., Bultitude et al., 1978, 1982; Blake et al., 1984). These last three units have yielded U–Pb zircon (SHRIMP) ages in the 1735–1740 Ma range (Neumann et al., 2009; Geoscience Australia, 2011; Kositcin et al., 2019). However, Bierlein et al. (2011) reported slightly younger SHRIMP zircon emplacement ages in the 1718–1722 Ma range for parts of the Revenue Granite and Mount Erle Igneous Complex, suggesting the units are composite. The 1740 ± 5 Ma age yielded by the Overlander Granite as part of the current study is similar to ages recorded for the units listed above and, therefore, supports the interpretations of earlier workers. The granite is associated spatially with several small Cu–Au deposits in nearby country rocks (Corella Formation) including the Overlander group of mines (abandoned) and prospects, and the Andy’s Hill (Cu–Au–Co–La) and Scalper (Cu–Au) prospects (Denaro et al., 2003), but a genetic relationship between the granite and mineralisation has yet to be unequivocally demonstrated. Granite of the Myubee Igneous Complex yielded a slightly younger age of 1727 ± 5 Ma. We interpret this as a minimum age for igneous crystallisation of the granite, because most of the SHRIMP zircon analyses preserve evidence of post-crystallisation isotopic disturbance. However, it does support the conclusion of Passchier (1992) who deduced that the Myubee Igneous Complex is slightly younger than the nearby Revenue Granite, based on structural criteria. According to Passchier D1 (local) structures in the Revenue Granite are not present in the Myubee Igneous Complex. The significance of the anomalously young SHRIMP, zircon age of 1722 ± 5 Ma subsequently reported by Bierlein et al. (2011) for the Revenue Granite has yet to be resolved. The dated sample of Wimberu Granite is from a relatively small lobe, separated from the main outcrop area to the east by an extensive cover of younger Georgina Basin rocks. The lobe is located ~11 km east of the Pilgrim Fault Zone, which marks the eastern boundary of the Mary Kathleen Domain. The analysed sample yielded a U–Pb zircon age of 1518 ± 5 Ma, which is similar to the U–Pb (SHRIMP) zircon ages reported previously for different parts of the main body of Wimberu Granite east of Devoncourt homestead—namely 1508 ± 4 Ma (Page & Sun, 1998) and 1512 ± 4 (Pollard & McNaughton, 1997). <b>Bibliographic Reference: </b>Bodorkos, S., Purdy, D.J., Bultitude, R.J., Lewis, C.J., Jones, S.L., Brown, D.D. and Hoy, D., 2020. Summary of Results. Joint GSQ–GA Geochronology Project: Mary Kathleen Domain and Environs, Mount Isa Inlier, 2018–2020. <i>Queensland Geological Record</i><b> 2020/04</b>.

  • The Galilee Basin Hydrogeological Model is a numerical groundwater flow model of the Galilee subregion in Queensland, an area of approximately 300,000 square kilometres. The model encompasses the entire geological Galilee Basin as well as parts of the overlying Eromanga Basin and surficial Cenozoic sediments. The model includes aquifers that form part of the Great Artesian Basin (specifically those aquifers in the Eromanga Basin), a hydrogeological system of national significance (see Evans et al 2018). The development of the Galilee Basin Hydrogeological Model represented an ambitious, first-pass attempt to better understand potential regional-scale cumulative groundwater impacts of seven proposed coal mines in the Galilee Basin (as known circa 2014, see Lewis et al. 2014 for details). This work was commissioned as part of the bioregional assessment for the Galilee subregion (https://www.bioregionalassessments.gov.au/assessments/galilee-subregion). Geoscience Australia has made the flow model and associated datasets available to support further academic or research investigations within the region. Importantly though, due to a number of limitations and assumptions (outlined in the final model report, Turvey et al., 2015), the model is not suitable for decision-making in relation to water resource planning or management. Further, the model was not developed to predict potential groundwater impacts of any individual mining operations, but provides a regional cumulative development perspective. The groundwater model and associated report were produced by HydroSimulations under short-term contract to Geoscience Australia in 2015. The report is referenced in several products released as part of the bioregional assessment (BA) for the Galilee subregion. However, due to the size, complexity and limitations of this model, this model was not used as the primary groundwater modelling input for the Galilee BA. Further detail about the key modelling limitations and why it was unsuitable for use in the Galilee BA are outlined in the BA Groundwater modelling report (Peeters et al., 2018). References Evans T, Kellett J, Ransley T, Harris-Pascal C, Radke B, Cassel R, Karim F, Hostetler S, Galinec V, Dehelean A, Caruana L and Kilgour P (2018) Observations analysis, statistical analysis and interpolation for the Galilee subregion. Product 2.1-2.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/LEB/GAL/2.1-2.2. Lewis S, Cassel R and Galinec V (2014) Coal and coal seam gas resource assessment for the Galilee subregion. Product 1.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. https://www.bioregionalassessments.gov.au/assessments/12-resource-assessment-galilee-subregion. Peeters L, Ransley T, Turnadge C, Kellett J, Harris-Pascal C, Kilgour P and Evans T (2018) Groundwater numerical modelling for the Galilee subregion. Product 2.6.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/LEB/GAL/2.6.2. Turvey C, Skorulis A, Minchin W, Merrick NP and Merrick DP (2015) Galilee Basin hydrogeological model Milestone 3 report for Geoscience Australia. Prepared by Heritage Computing Pty Ltd trading as Hydrosimulations. Document dated 16 November 2015. http://www.bioregionalassessments.gov.au/sites/default/files/galilee-basin-hydrological-model-pdf.pdf. <b>The model is available on request from clientservices@ga.gov.au - Quote eCat# 146155</b>