marine biodiversity
Type of resources
Keywords
Publication year
Scale
Topics
-
This dataset contains species identifications of molluscs collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled. Specimens were lodged at Northern Territory Museum on the 3 May 2010. Species-level identifications were undertaken by Richard Willan at the Northern Territory Museum and were delivered to Geoscience Australia on the 5 May 2010 (leg 1 only). See GA Record 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.
-
Biophysical dispersal models are rapidly developing into a powerful and sophisticated means of investigating the interface between oceanographic and biological processes. By coupling ocean physics with larval behaviour, it becomes possible to study expected dispersal patterns, assess the potential impact of rare and/or catastrophic events, evaluate the sensitivity of the system to changes in larval characteristics or behaviour, and project these impacts over time. Potential applications include: examining the influence of vertical movement, studying the effects of different navigational strategies, analysing the effects of a defined reproductive season, and assessing the consequences of applying different survivorship functions. The development and implementation of these types of models will be addressed, and examples from Southeast Asia and Australia will be provided.
-
The Marine Biodiversity Hub was funded by the Australian Government Commonwealth Environmental Research Facilities (CERF) between 2007 and 2010. The Hub was developed to improve the scientific knowledge available to support marine bioregional planning and addressed two fundamental questions: 1. How can we predict the distribution of marine biodiversity; and 2. How can we use this improved capability to conserve and manage biodiversity in a multiple-use environment? This talk focuses on the Surrogates Program, one of four research programs in the Hub. The Surrogates Program addressed the above questions by testing and developing physical variables as surrogates of marine biodiversity, with a focus on seabed environments. In the program, we employed a range of marine survey technologies to collect high-quality and co-located benthic physical and biological data at four selected areas in temperate and tropical waters. We also developed advanced spatial and statistical approaches to test the degree of covariance between the physical and biological data, identify ecological processes, and generate prediction maps. During a number of field campaigns, we deployed a range of instruments to collect data including multibeam sonar, sediment grabs, benthic sleds, towed-video/still images and Autonomous Underwater Vehicles. GIS, machine-learning models and the SWAN hydrodynamic model were used to derive and predict a large number of physical variables as potential surrogates. The effectiveness of the surrogacy approaches were examined using multivariate analyses and spatial modelling techniques. In general, we found that using physical surrogates to predict marine biodiversity is a cost-effective approach. The new knowledge of surrogates and seabed ecological processes directly supports the management of the Australian marine estate. Other major outputs of the Surrogates Program include: - Thirty-seven new and updated national-scale marine physical environmental datasets; - High resolution bathymetry of targeted areas, covering almost 2000 km2, plus 171 km of underwater video transects, 402 sediment grab samples and 232 epifauna samples; - New seabed exposure and fetch models/datasets; and - Peer-reviewed reports and papers in scientific journals. The success of the Marine Biodiversity Hub has enabled the Hub to be refunded for a further four years through the new National Environmental Research Program. In this, Geoscience Australia (GA) is collaborating with the University of Tasmania, CSIRO Marine & Atmospheric Research, Australian Institute of Marine Science, Museum of Victoria, University of Western Australia and Charles Darwin University; GA is also leading Theme 3 Project 1 which focuses on identifying the functions and processes of shelf and canyon ecosystems. The project is expected to further advance marine biodiversity research in Australia by investigating the role of large-scale physical features on the shelf in influencing patterns of marine biodiversity.
-
This dataset contains species identifications of molluscs collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled. Specimens were lodged at Northern Territory Museum on the 8 February 2010. Species-level identifications were undertaken by Richard Willan at the Northern Territory Museum and were delivered to Geoscience Australia on the 15 March 2010. See GA Record 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.<p><p>This dataset is not to be used for navigational purposes.
-
Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave generated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. Family per sample matrix generated by aggregating species level data in JBinfauna_species (25Oct10).xls using the information in JBinfauna_Taxa_info (25Oct10).xls.
-
The Antarctic continental slope spans the depths from the shelf break (usually between 500-1000 m) to ~3000 m, is very steep, overlain by 'warm' Circumpolar Deep Water and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the deep-sea fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell and Scotia sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III and BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ II cruises as well as current data bases (SOMBASE, SCAR-MarBIN), we selected four different taxa (i.e. cheilostome bryozoans, isopod and ostracod crustaceans, and echinoid echinoderms) and two areas, the Weddell and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations (and therefore support or not glaciological reconstructions of ice sheets covering continental shelves).
-
Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave generated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. Family per sample matrix generated by aggregating species level data in JBinfauna_species (25Oct10).xls using the information in JBinfauna_Taxa_info (25Oct10).xls.
-
The Casey Station Bathymetry Survey was conducted last summer from December 2014 to February 2015. This collaborative survey was undertaken by Geoscience Australia, the Royal Australian Navy and the Australian Antarctic Division, using the AAD's workboat the RV Howard Burton. The survey goal was to acquire high resolution bathymetry data to improve our understanding of the seafloor using multibeam sonar. The bathymetry data collection will be supplemented by physical sampling of the seafloor sediments and video recordings of the biological communities living in the seafloor. The survey will cover areas that haven't been charted during the 2013 Casey Survey and are frequently used by the RSV Aurora Australis. Improving our understanding of the seabed environment in these shallow coastal waters will ultimately lead to a better environmental management of the Australian Antarctic Territory. The data will also help the RAN to develop more accurate navigation charts therefore reducing the risk to maritime operation in the region.
-
This dataset contains species identifications of molluscs collected during survey SOL5117 (R.V. Solander, 30 July - 27 August, 2010). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled (SL) and Smith McIntyre grab (GR). Specimens were lodged at Northern Territory Museum on the 27 August 2010. Species-level identifications were undertaken by Richard Willan at the Northern Territory Museum and were delivered to Geoscience Australia on the December 2010 (for large samples) and 26 June 2012 (for smaller molluscs from grabs). See GA Record 2011/08 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications. Comments: The following comments relate to live-taken specimens only: 1. The SOL5117 molluscan samples contain at least one new species (Talabrica sp.), one new record for Australia (Oliva rufofulgurata), and five new records for Commonwealth waters north of the Northern Territory (Strombus hickeyi, Trigonostoma textilis, Dentalium formosum, Phyllidiopsis shireeenae, Ceratosoma trilobatum). 2. Many of the molluscan species in the SOL5117 grab samples, both live individuals and dead shells, are represented only by tiny juveniles, so identification to species level is not possible because the shell characters change considerably as the species reaches maturity. 3. Clearly the majority of molluscs in the SOL5117 samples are represented by dead shells only. 4. Species richness is far higher than suggested by these samples. Judging from the range of species present in the SOL4934 and SOL5117 samples plus the accumulation of species through the samples, the molluscan biodiversity in this area would be between 400 and 500 species, the great majority micromolluscs (i.e., < 5 mm in greatest dimension). 5. The SOL5117 molluscan samples are not as comprehensive as the earlier SOL4934 samples taken in the same areas(s). 6. The SOL5117 molluscan samples provide us with hardly any picture of the composition or abundance of molluscs within or between the sites. 7. The SOL5117 molluscan samples should not be used to assess the conservation status of the submarine communities in the area(s) sampled. 8. More targeted and intensive sampling is required to appropriately measure molluscan diversity, abundance and communities in this region. ~ R Willan
-
This dataset contains species identifications of macro-benthic worms collected during survey GA2476 (R.V. Solander, 12 August - 15 September 2008). Animals were collected from the Western Australian Margin with a BODO sediment grab or rock dredge. Specimens were lodged at Museum of Victoria on the 10 March 2009. Species-level identifications were undertaken by Robin Wilson at the Museum of Victoria and were delivered to Geoscience Australia on the 7 May 2009. See GA Record 2009/02 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.