From 1 - 10 / 101
  • Australia has been making major progress towards early deployment of carbon capture and storage from natural gas processing and power generation sources. This paper will review, from the perspective of a government agency, the current state of various Australian initiatives and the advances in technical knowledge up until the 2010 GHGT conference. In November 2008, the Offshore Petroleum and Greenhouse Gas Storage Bill 2006 was passed by the Australian Parliament and established a legal framework to allow interested parties to explore for and evaluate storage potential in offshore sedimentary basins that lie in Australian Commonwealth waters. As a result of this Act, Australia became the first country in the world, in March 2009, to open exploration acreage for storage of greenhouse gases under a system that closely mirrors the well-established Offshore Petroleum Acreage Release. The ten offshore areas offered for geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances. The co-incidence of the 2009 Global Financial Crisis may have reduced the number of prospective CCS projects that were reported to be in the 'pipe-line' and the paper examines the implications of this apparent outcome. The Carbon Storage Taskforce has brought together both Australian governments technical experts to build a detailed assessment of the perceived storage potential of Australia's sedimentary basins. This evaluation has been based on existing data, both on and offshore. A pre-competitive exploration programme has also been compiled to address the identified data gaps and to acquire, with state funding, critical geological data which will be made freely available to encourage industrial participation in the search for commercial storage sites.

  • As part of the Australian Government's National CO2 Infrastructure Plan (NCIP), Geoscience Australia has undertaken integrated assessments of selected offshore sedimentary basins for their CO2 storage potential. In March and April 2012, Geoscience Australia completed a seabed survey (GA0334) over two targeted areas (Area 1 and Area 2) of the Vlaming Sub-basin (Figure 1 1), as part of a larger study investigating the suitability of the Vlaming Sub-basin for geological storage of CO2. This document summarises the results and interpretation of seabed and shallow geological (to 30 m below the seabed) data acquired during survey GA0334 in the Vlaming Sub-basin. These data and their interpretations are being used to support the investigation of the Vlaming Sub-basin for CO2 storage potential.

  • As part of the Australian Government's National CO2 Infrastructure Plan (NCIP), Geoscience Australia undertook a CO2 storage assessment of the Vlaming Sub-basin. The Vlaming Sub-basin a Mesozoic depocentre within the offshore southern Perth Basin located about 30 km west of Perth, Western Australia. The main depocentres formed during the Middle Jurassic to Early Cretaceous extension. The post-rift succession comprises up to 1500 m of a complex fluvio-deltaic, shelfal and submarine fan system. Close proximity of the Vlaming Sub-basin to industrial sources of CO2 emissions in the Perth area drives the search for storage solutions. The Early Cretaceous Gage Sandstone was previously identified as a suitable reservoir for the long term geological storage of CO2 with the South Perth Shale acting as a regional seal. The Gage reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. The study provides a more detailed characterisation of the post Valanginian Break-up reservoir - seal pair by conducting a sequence stratigraphic and palaeogeographic assessment of the SP Supersequence. It is based on an integrated sequence stratigraphic analysis of 19 wells and 10, 000 line kilometres of 2D reflection seismic data, and the assessment of new and revised biostratigraphic data, digital well logs and lithological interpretations of cuttings and core samples. Palaeogeographies were reconstructed by mapping higher-order prograding packages and establishing changes in sea level and sediment supply to portray the development of the delta system. The SP Supersequence incorporates two major deltaic systems operating from the north and south of the sub-basin which were deposited in a restricted marine environment. Prograding clinoforms are clearly imaged on regional 2D seismic lines. The deltaic succession incorporates submarine fan, pro-delta, delta-front to shelfal, deltaic shallow marine and fluvio-deltaic sediments. These were identified using seismic stratigraphic techniques and confirmed with well ties where available. The break of toe slope was particularly important in delineating the transition between silty slope sediments and fine-grained pro-delta shales which provide the seal for the Gage submarine fan complex. As the primary reservoir target, the Gage lowstand fan was investigated further by conducting seismic faces mapping to characterise seismic reflection continuity and amplitude variations. The suitability of this method was confirmed by obtaining comparable results based on the analysis of relative acoustic impedance of the seismic data. The Gage reservoir forms part of a sand-rich submarine fan system and was sub-divided into three units. It ranges from canyon confined inner fan deposits to middle fan deposits on a basin plain and slump deposits adjacent to the palaeotopographic highs. Directions of sediment supply are complex. Initially, the major sediment contributions are from a northern and southern canyon adjacent to the Badaminna Fault Zone. These coalesce in the inner middle fan and move westward onto the plain producing the outer middle fan. As time progresses sediment supply from the east becomes more significant. Although much of the submarine fan complex is not penetrated by wells, the inner fan is interpreted to contain stacked channelized high energy turbidity currents and debris flows that would provide the most suitable reservoir target due to good vertical and lateral sand connectivity. The middle outer fan deposits are predicted to contain finer-grained material hence would have poorer lateral and vertical communication.

  • Geoscience Australia has recently completed the Bonaparte CO2 Storage project, an assessment of the CO2 storage potential of the Petrel Sub-basin. In 2009, two greenhouse gas assessment leases were released, PTRL-01 and PTRL-02, under the Offshore Petroleum and Greenhouse Gas Storage Act of 2006. Both are proximal to the developing LNG market in Darwin, as well as a number of hydrocarbon accumulations in the Bonaparte Basin. A key phase of the project was geological modelling to test CO2 injection scenarios. Initial 3D seismic horizon surfaces were generated to create a 'simple' geological model. A 'complex' geological model was built by integrating a structure model, which was depth converted. Subsequently, models were populated with reservoir properties such as Vshale, porosity and permeability. Palaeogeography maps were generated for all key stratigraphic units and were used to populate the model where well control was lacking. Using Permedia', CO2 migration simulations with randomly located injection wells were run on a high resolution model to study the migration pathways, major accumulations and the effects of vertical anisotropy. Smaller areas of interest were then identified to reduce the size of the model and allow fluid flow reservoir simulations study using Permedia' and CMG-GEM'. The later study estimated the practical injectivity, storage volume, reservoir pressure during and after CO2 injection.

  • Having techniques available for the accurate quantification of potential CO2 surface leaks from geological storage sites is critical for regulators, public assurance and for underpinning carbon pricing mechanisms. Currently, there are few options available that enable accurate CO2 quantification of potential leaks at the soil-atmosphere interface. Integrated soil flux measurements can be used to quantify CO2 emission rates from the soil and atmospheric techniques such as eddy covariance or Lagrangian stochastic modelling have been used with some success to quantify CO2 emissions into the atmosphere from simulated surface leaks. The error for all of these techniques for determining the emission rate is not less than 10%. A new technique to quantify CO2 emissions was trialled at the CO2CRC Ginninderra controlled release site in Canberra. The technique, termed atmospheric tomography, used an array of sampling sites and a Bayesian inversion technique to simultaneously solve for the location and magnitude of a simulated CO2 leak. The technique requires knowledge of concentration enhancement downwind of the source and the normalized, three-dimensional distribution (shape) of concentration in the dispersion plume. Continuous measurements of turbulent wind and temperature statistics were used to model the dispersion plume.

  • An atmospheric greenhouse gas (GHG) monitoring station began operation in July 2010 near Emerald, Queensland. The station is part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR) to establish and operate a high precision atmospheric monitoring facility for measurement of baseline greenhouse gases (GHG) in a high priority geological carbon dioxide storage region. The primary purpose of the station is to field test newly developed greenhouse gas monitoring technology and demonstrate best practice for regional baseline atmospheric monitoring appropriate for geological storage of carbon dioxide. The GHG records were to be used as a reference for monitoring of the atmosphere at a CO2 storage project, providing a baseline to quantify typical variations in the area and a background against which any anomalies in the immediate vicinity of the storage might be detected. The site chosen for the GHG atmospheric monitoring station is in the locality of Arcturus, 50 km southeast of Emerald in the Central Highlands, Queensland. Site selection was based on the recommendations of the Carbon Storage Taskforce's National Carbon Mapping and Infrastructure Plan, regional assessments of prospective basins, regional atmospheric modelling, and consultation with key stakeholders. The key driver for the stakeholder consultation group was to support early projects for large scale onshore geological storage. Both the Bowen and Surat basins were identified as potential early mover onshore storage regions by the group and suitable for a regional atmospheric monitoring station. During early 2010, ZeroGen had an active exploration program for geological storage and the site was eventually located approximately 8km upwind from the boundary of ZeroGen's most prospective storage area in the northern Denison Trough, part of the larger Bowen Basin. The Arcturus site and environs is representative of the activities and ecology of Queenslan's Central Highlands and the greenhouse gas signals are likely be influenced by cropping, pasture, cattle production, and gas and coal activities. These same activities are also likely to be dominant sources of greenhouse gases in the Surat Basin. Importantly, the site is secure, can be accessed via an existing road, is not subject to flooding, and has easy access to electrical lines that only required the installation of a transformer on an electric pole. A long lead time for new electricity connections at remote sites (potentially greater than 12 months) was identified as a key risk to the project. Negotiations with the electricity supplier resulted in connection in less than 4 months. An access agreement was negotiated with the landowner to enable the installation of the monitoring station and access to the site.

  • In 2011 as part of the National CO2 Infrastructure Plan (NCIP), Geoscience Australia started a three year project to provide new pre-competitive data and a more detailed assessment of the Vlaming Sub-basin prospectivity for the storage of CO2. Initial assessment by Causebrook 2006 of this basin identified Gage Sandstone and South Perth Shale (SPS) formations as the main reservoir/seal pair suitable for long-term storage of CO2. SPS is a thick (1900 m) deltaic succession with highly variable lithologies. It was estimated that the SPS is capable of holding a column of CO2 of up to 663m based on 6 MICP tests (Causebrook, 2006). The current study found that sealing capacity of the SPS varies considerably across the basin depending on what part of the SPS Supersequence is present at that location. Applying a sequence-stratigraphic approach, the distribution of mudstone facies within the SPS Supersequence, was mapped across the basin. This facies is the effective sub-regional seal of the SPS. Analysis of the spatial distribution and thickness of the effective seal is used for characterisation of the containment potential in the Vlaming Sub-basin CO2 storage assessment.

  • Abstract for submission to 11th IEA GHG International Conference on Greenhouse Gas Control Technologies. Conference paper to follow pending selection for oral or poster presentation. Abstract covers the GA-ACCA21 China Australia Geological Storage of CO2 (CAGS) Project run through PMD/ED 2009-2012.

  • Geoscience Australia conducted a marine seismic survey (GA-0352) over poorly defined areas of the Gippsland Basin between 5th of April to the 24th of April 2015. The aim was to acquire industry-standard precompetitive 2D seismic data, Multi-beam echo-sounder (MBES) and sub-bottom profiling (SBP) data to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The data collected during this survey will enhance sequence stratigraphic studies in the Gippsland Basin that provide constraints on the most suitable areas for storage of CO2 and help to identify potential CO2 storage reservoirs. The survey was conducted by Gardline CGG vessel MV Duke The data collected during the survey are available for free download from the Geoscience Australia website. This dataset include all the bathymetry data collected during the survey.<p><p>This dataset is not to be used for navigational purposes.

  • Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) completed an analysis of the potential for the geological storage of CO2. The geological analysis produced an assessment from over 100 potential Environmentally Sustainable Sites for CO2 Injection (ESSCI) by applying a deterministic risk assessment. Out of 100 potential sites, 65 proved to be valid sites for further study. This assessment examined predominantly saline reservoirs which is where we believe Australia?s greatest storage potential exists. However, many of these basins also contain coal seams that may be capable of storing CO2. Several of these coal basins occur close to coal-fired power plants and oil and gas fields where high levels of CO2 are emitted. CO2 storage in coal beds is intrinsically different to storage in saline formations, and different approaches need to be applied when assessing them. Whilst potentially having economic benefit, enhanced coal bed methane (ECBM) production through CO2 injection does raise an issue of how much greenhouse gas mitigation might occur. Even if only small percentages of the total methane are liberated to the atmosphere in the process, then a worse outcome could be achieved in terms of greenhouse gas mitigation. The most suitable coal basins in Australia for CO2 storage include the Galilee, Cooper and Bowen-Surat basins in Queensland, and the Sydney, Gunnedah, and Clarence-Moreton Basins in New South Wales. Brief examples of geological storage within saline aquifers and coal seams in the Bowen and Surat basins, Queensland Australia, are described in this paper to compare and contrast each storage option.