geological storage of CO2
Type of resources
Keywords
Publication year
Scale
Topics
-
Atmospheric tomography is a monitoring technique that uses an array of sampling sites and a Bayesian inversion technique to simultaneously solve for the location and magnitude of a gaseous emission. Application of the technique to date has relied on air samples being pumped over short distances to a high precision FTIR Spectrometer, which is impractical at larger scales. We have deployed a network of cheaper, less precise sensors during three recent large scale controlled CO2 release experiments; one at the CO2CRC Ginninderra site, one at the CO2CRC Otway Site and another at the Australian Grains Free Air CO2 Enrichment (AGFACE) facility in Horsham, Victoria. The purpose of these deployments was to assess whether an array of independently powered, less precise, less accurate sensors could collect data of sufficient quality to enable application of the atmospheric tomography technique. With careful data manipulation a signal suitable for an inversion study can be seen. A signal processing workflow based on results obtained from the atmospheric array deployed at the CO2CRC Otway experiment is presented.
-
Abstract for submission to 11th IEA GHG International Conference on Greenhouse Gas Control Technologies. Conference paper to follow pending selection for oral or poster presentation. Abstract covers the GA-ACCA21 China Australia Geological Storage of CO2 (CAGS) Project run through PMD/ED 2009-2012.
-
In May 2013, Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) undertook a collaborative seabed mapping survey (GA0340/ SOL5754) on the Leveque Shelf, a distinct geological province within the Browse Basin, offshore Western Australia. The purpose of the survey was to acquire geophysical and biophysical data on seabed environments over a previously identified potential CO2 injection site to better understand the overlying seabed habitats and to assess potential for fluid migration to the seabed. Mapping and sampling was undertaken across six areas using multibeam and single beam echosounders, sub-bottom profilers, sidescan sonar, underwater towed-video, gas sensors, water column profiler, grab samplers, and vibrocorer. Over 1070 km2 of seabed and water column was mapped using the multibeam and single beam echosounder, in water depths ranging between 40 and 120 m. The sub-surface was investigated using the multichannel and the parametric sub-bottom profilers along lines totalling 730 km and 1547 km in length respectively. Specific seabed features were investigated over 44 line km using the sidescan sonar and physically and sampled at 58 stations. Integration of this newly acquired data with existing seismic data will provide new insights into the geology of the Leveque Shelf. This work will contribute to the Australian Government's National CO2 Infrastructure Plan (NCIP) by providing key seabed environmental and geological data to better inform the assessment of the CO2 storage potential in this area of the Browse Basin. This dataset contains identifications of Polychaetes collected from 64 Smith-McIntyre grabs deployed during GA0340/SOL5754.
-
This report provides an analysis and evaluation of fluid seepage and habitats in two targeted areas of the Petrel Sub-basin, Bonaparte Basin, northern Australia, and provides scientific information on the seabed and shallow sub-surface geology as part of a study on the potential of this area for CO2 sequestration. The Petrel Sub-basin, located beneath the modern Joseph Bonaparte Gulf, has been assessed by Geoscience Australia as part of the Australian Government funded National Low Emissions Coal Initiative (NLECI) to accelerate the development and deployment of low emissions coal technologies including geological sequestration of CO2. This study is the first undertaken by Geoscience Australia that integrates seafloor and shallow sub-surface geology data to provide information on the potential to sequester CO2 in sub-surface geological reservoirs and their suitability for purpose. In particular, this work involved the integration of data from seabed habitat characterisation studies and sub-surface geological studies to determine if evidence for fluid seepage from depth to the seabed exists at the two study sites within the Petrel Sub-basin. No evidence for hydrocarbons from depth were found. However, fluid seepage at the seabed has been and potentially is occurring; this result stemming from observations on seabe geomorphology, sedimentology, chemistry, and acoustic sub-bottom profiles.
-
Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises sparker sub bottom profiles processed as shallow, high resolution, multichannel seismic reflection data (SEG-Y format), navigation files (P190) and stacking velocities.
-
Phase two of the China Australia Geological Storage of CO2 (CAGS2) project aimed to build on the success of the previous CAGS project and promote capacity building, training opportunities and share expertise on the geological storage of CO2. The project was led by Geoscience Australia (GA) and China's Ministry of Science and Technology (MOST) through the Administrative Centre for China's Agenda 21 (ACCA21). CAGS2 has successfully completed all planned activities including three workshops, two carbon capture and storage (CCS) training schools, five research projects focusing on different aspects of the geological storage of CO2, and ten researcher exchanges to China and Australia. The project received favourable feedback from project partners and participants in CAGS activities and there is a strong desire from the Chinese government and Chinese researchers to continue the collaboration. The project can be considered a highly successful demonstration of bi-lateral cooperation between the Australian and Chinese governments. Through the technical workshops, training schools, exchange programs, and research projects, CAGS2 has facilitated and supported on-going collaboration between many research institutions and industry in Australia and China. More than 150 experts, young researchers and college students, from over 30 organisations, participated in CAGS2. The opportunity to interact with Australian and international experts at CAGS hosted workshops and schools was appreciated by the participants, many of whom do not get the opportunity to attend international conferences. Feedback from a CAGS impact survey found that the workshops and schools inspired many researchers and students to pursue geological storage research. The scientific exchanges proved effective and often fostered further engagement between Chinese and Australian researchers and their host organisations. The research projects often acted as a catalyst for attracting additional CCS funding (at least A$700,000), including two projects funded under the China Clean Development Mechanism Fund. CAGS sponsored research led to reports, international conference presentations, and Chinese and international journal papers. CAGS has established a network of key CCS/CCUS (carbon capture, utilisation and storage) researchers in China and Australia. This is exemplified by the fact that 4 of the 6 experts that provided input on the 'storage section of the 12th Five-Year plan for Scientific and Technological Development of Carbon Capture, Utilization and Storage, which laid out the technical policy priorities for R&D and demonstration of CCUS technology in China, were CAGS affiliated researchers. The contributions of CAGS to China's capacity building and policy CCUS has been acknowledged by the Chinese Government. CAGS support of young Chinese researchers is particularly noted and well regarded. Letters have been sent to the Secretary of the Department of Industry and Science and to the Deputy CEO of Geoscience Australia, expressing China's gratitude for the Australian Government's support and GA's cooperation in the CAGS project.
-
As part of Australian Government's National Low Emission Coal Initiative (NLECI) and National CO2 Infrastructure Plan (NCIP), Geoscience Australia (GA) has been assessing offshore sedimentary basins for their CO2 storage potential. These studies, scheduled for completion by 30 June 2015, aim to identify potential sites for the geological storage of CO2 and provide pre-competitive information for the development of CO2 transport and storage infrastructure near major emission sources. The basins targeted for these studies are the Bonaparte Basin (Petrel Sub-basin), Browse Basin, Perth Basin (Vlaming Sub-basin) and Gippsland Basin. GA completed a series of marine surveys over the Petrel and Vlaming sub-basins and the Browse Basin during 2012-2013, that acquired 2D reflection seismic, multibeam bathymetry/backscatter and sub-bottom profiling data, and seabed samples and video footages. The datasets have been analysed to inform the assessment of potential CO2 storage capacity and containment for each study area. Integrated interpretation of the seabed, shallow subsurface and deep basin data has assisted the identification of potential fluid migration features that may indicate seal breach and the presence of migration pathways. Data on seabed environments and ecological habitats will provide a baseline for an assessment of the potential impacts of CO2 injection and storage, and associated infrastructure development.
-
This geomechanical analysis of the Browse Basin was undertaken as part of the CO2CRC's Browse Basin Geosequestration Analysis. This study aims to constrain the geomechanical model (in situ stresses), and to evaluate the risk of fault reactivation. The stress regime in the Browse Basin is one of strike-slip faulting i.e. maximum horizontal stress (~ 28.3 MPa/km) > vertical stress (22 MPa/km) > minimum horizontal stress (15.7 MPa/km). Pore pressure is near hydrostatic in all wells except for two, which exhibit elevated pore fluid pressures at depths greater than 3500 m. A maximum horizontal stress orientation of 095' was considered to be most appropriate for the Barcoo sub-basin, which was the area of focus in this study. The risk of fault reactivation was calculated using the FAST (Fault Analysis Seal Technology) technique, which determines fault reactivation risk by estimating the increase in pore pressure required to cause reactivation. Fault reactivation risk was calculated using two fault strength scenarios; cohesionless faults (C = 0; ? = 0.6) and healed faults (C = 5; ? = 0.75). The orientations of faults with high and low reactivation risks is almost identical for healed and cohesionless faults. High angle faults striking N-S are unlikely to reactivate in the current stress regime. High angle faults orientated ENE-WSW and ESE-WNW have the highest fault reactivation risk. Due to the fact that the SH gradient was determined using frictional limits, the most unfavourably oriented cohesionless faults cannot sustain any pore pressure increase without reactivating. By contrast, using a cohesive fault model indicates that those same faults would be able to sustain a pore pressure increase (Delta P) of 9.6 MPa. However, it must be emphasized that the absolute values of Delta P presented in this study are subject to large errors due to uncertainties in the geomechanical model, in particular for the maximum horizontal stress. Therefore, the absolute values of Delta-P presented herein should not be used for planning purposes. Fault reactivation risk was evaluated for 10 faults with known orientations. All faults were interpreted as extending from below the Jurassic target reservoir formation to the surface. The dominant fault in the Barcoo sub-basin is the large fault which extends from Trochus 1 to Sheherazade 1 to Arquebus 1. This deeply penetrating, listric fault initially formed as a normal fault and was subsequently reactivated in thrust mode. Most of the faults in the Barcoo sub-basin trend broadly N-S and are therefore relatively stable with respect to increases in pore pressure. However, there are sections within some individual faults where fault orientation becomes close to optimal. In these sections, small increases in pore pressure (<5 MPa) may be sufficient to cause fault reactivation. If this were to occur, then significant risk of CO2 leakage would exist, as these sections cross-cut the regional seal.
-
Increasing CO2 emissions resulting from the expansion of coal fired power generation capacity and other industry in Queensland suggests that a long-term high capacity storage solution is needed. Despite some relatively large distances (upwards of 500 km) between sources and sinks, a review of the Galilee Basin suggests that it may have the potential to sequester a significant amount of Queensland's stationary CO2 emissions, however a paucity of data in several significant regions do not allow this potential to be fully assessed at the present time. Sandstones with good porosity and permeability characteristics occur within several formations including the Early Permian Aramac Coal Measures, the Late Permian Colinlea Sandstone and the Triassic Clematis Sandstone. Intraformational and local seals as well as a regional seal, the Triassic Moolayember Formation and the Permian Bandanna Formation, appear sufficient although these have not been tested. Stratigraphic and residual/solution trapping are the most likely CO2 storage mechanisms, as low amplitude structures are a feature of the Galilee Basin. Most of the structures targeted by exploration companies are generally too small to store CO2 in the quantities anticipated to be emitted from potential emission nodes such as the Rockhampton-Gladstone region. Regional reconnaissance indicate small 15-20 km2 structures with a 50-125 m net sandstone section are typical for the Clematis Sandstone Formation in the south eastern area of the Galilee Basin. Covering an area of approximately 247,000 km2 and measuring around 700km north-south and 520 east-west, the Galilee Basin is a significant feature of central Queensland. Three main depocentres the Koburra Trough (east), the Lovelle Depression (west) and the Southern Galilee Basin (south) contain several hundred metres of Late Carboniferous to Middle Triassic sediments (up to 3000m, 730m, and 1400m respectively). Most of the low amplitude structures in the basin, generally trending north-easterly to north-westerly, are the result of reactivation of older basement structures in the underlying Drummond and Adavale Basins. Tectonic events were dominantly compressional resulting in uplift and erosion of parts of the basin during the Late Permian and Triassic. A regional south-westerly tilt was later imposed due to downwarping of the overlying Eromanga Basin, which is up to 1200 m thick over the Galilee strata. Sedimentation in the Galilee Basin was dominated by fluvial to lacustrine (and in part glacial) depositional systems. This resulted in a sequence of sandstones, mudstones, siltstones, coals and minor tuff in what was a relatively shallow intracratonic basin. The entire Galilee sequence is saturated with good to excellent quality fresh water in both the Permian and Triassic strata (Hawkins, unpublished) with probable recharge from the north-east into the outcropping Triassic reservoirs. Sediment composition is mixed as a result of a variety of provenances including older sedimentary rock, metasediments and other metamorphic rocks, granites, volcanics and direct volcanic input (tuffs). Climate varied from glacial to warm and humid to temperate. Forty years or more of exploration in the Galilee Basin has failed to discover any economic accumulations of hydrocarbons, despite the presence of apparently good to very good reservoirs and seals in both the Permian and Triassic sequence. Further geological study and in particular the interpretation of seismic data is required to increase the understanding and assess the quality of the basin for CO2 storage including; fully assessing reservoirs, seals and trapping mechanisms; estimating storage capacity; and addressing issues such as the presence of a potentially large fresh water resource.
-
This report is part of the results of a study into the potential for the geological storage of carbon dioxide within the Triassic Formations of the Galilee Basin in central Queensland carried out in Geoscience Australia on behalf of the CO2CRC. A review of the geological potential of the area has been issued as a separate report (Marsh et al., 2008) and this document describes the construction of a static geological model of one of the potential reservoirs in one area of the basin, while the results of a preliminary dynamic simulation study based on this model will be presented in a separate report by the reservoir engineer Yildiray Cinar of UNSW.