From 1 - 10 / 16
  • This animation shows how Magnetotelluric (MT) Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what magnetotelluric (MT) stations and equipment looks like what the equipment measures and how the survey works.

  • This animation shows how Airborne Electromagnetic Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animations include a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • This animation shows how Airborne Electromagnetic Surveys Work, when conducted by a rotary wing (helicopter) aircraft. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • This web service delivers the geographical extents and descriptive metadata of geophysical datasets from all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as from State and Territory geological survey agencies. Datasets include gravity, magnetic, radiometric, and electromagnetic data, and elevation data collected during geophysical surveys.

  • This web service delivers the geographical extents and descriptive metadata of geophysical datasets from all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as from State and Territory geological survey agencies. Datasets include gravity, magnetic, radiometric, and electromagnetic data, and elevation data collected during geophysical surveys.

  • <p>The Broken Hill Managed Aquifer Recharge (BHMAR) Skytem® Airborne Electromagnetic (AEM) Survey was commissioned by Geoscience Australia to support the BHMAR groundwater project. The survey was funded by the Australian Government through the Department of Environment. <p>The data package includes 32,659 line kilometres of heliborne time-domain SKYTEM® AEM data. Geoscience Australia contracted Geoforce Pty Ltd to acquire the Skytem® airborne electromagnetic data in western New South Wales from 28 June to 3 September 2009. The data were also processed by Geoforce Pty Ltd.. The data were acquired with a nominal transmitter loop height of 30 m on predominantly northwest-southeast oriented flight lines at 200 m spacing. There were some additional flight lines flow along various river traverses and an extension of the survey on northeast-southwest oriented flight lines.

  • <div><strong>Yathong, Forbes, Dubbo, and Coonabarabran Airborne Electromagnetic Survey Blocks.</strong></div><div><br></div><div>Geoscience Australia (GA), in collaboration with the Geological Survey of New South Wales (GNSW), conducted an airborne electromagnetic (AEM) survey from April to June 2023. The survey spanned from the north-eastern end of the Yathong-Ivanhoe Trough and extended across the Forbes, Dubbo, and Coonabarabran regions of New South Wales.&nbsp;A total of 15, 090-line kilometres of new AEM and magnetic geophysical data were acquired. This survey was entirely funded by&nbsp;GSNSW and GA managed acquisition, quality control, processing, modelling, and inversion of the AEM data.</div><div><br></div><div>The survey was flown by Xcalibur Aviation (Australia) Pty Ltd using a 6.25 Hz HELITEM® AEM system. The survey blocks were flown at 2500-metre nominal line spacings, with variations down to 100 metres in the Coonabarabran block. It was flown following East-West line directions. Xcalibur also processed the acquired data. This data package includes the acquisition and processing report, the final processed AEM data, and the results of the contractor's conductivity-depth estimates. The data package also contains the results and derived products from a 1D inversion by Geoscience Australia with its own inversion software.</div><div><br></div><div>The survey will be incorporated and become part of the national AusAEM airborne electromagnetic acquisition program, which aims to provide geophysical information to support investigations of the regional geology and groundwater.</div><div><br></div><div><strong>The data release package contains:</strong></div><div><br></div><div>1. A data release package <strong>summary PDF document</strong></div><div>2. The <strong>survey logistics and processing report</strong> and HELITEM® system specification files</div><div>3. <strong>Final processed point located line data</strong> in ASEG-GDF2 format for the five areas</div><div> -final processed dB/dt electromagnetic, magnetic and elevation data</div><div> -final processed B field electromagnetic, magnetic and elevation data</div><div><strong> <em>Conductivity estimates generated by Xcalibur’s inversion&nbsp;</em></strong></div><div> -point located conductivity-depth line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (PDF) multiplot conductivity stacks and section profiles for each flight line</div><div> -graphical (PNG) conductivity sections for each line</div><div> -grids generated from the Xcalibur’s inversion in ER Mapper® format (layer conductivities slices, DTM, X & Z component for each of the 25 channels, time constants, TMI)</div><div>4.<strong> ESRI shape and KML</strong> (Google Earth) files for the flight lines and boundary</div><div>5<strong>. Conductivity estimates generated by Geoscience Australia's inversion&nbsp;</strong></div><div> -point located line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (pdf) multiplot conductivity sections for each line</div><div> -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS)</div><div> -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)</div><div> -Curtain image conductivity sections in log & liner colour stretch (suitable 3D display in GA’s EarthSci)</div><div><br></div><div><strong>Directory structure</strong></div><div>├── <strong>01_Report</strong></div><div>├── <strong>02_XCalibur_delivered</strong></div><div>│&nbsp;&nbsp; ├── * survey_block_Name</div><div>│ ├── cdi</div><div>│ │ ├── sections</div><div>│ │ └── stacks</div><div>│ ├── grids</div><div>│ │ ├── cnd</div><div>│ │ ├── dtm</div><div>│ │ ├── emxbf</div><div>│ │ ├── emxdb</div><div>│ │ ├── emxff</div><div>│ │ ├── emxzbf</div><div>│ │ ├── emzdb</div><div>│ │ ├── time_constant</div><div>│ │ └── tmi</div><div>│ ├── located_data</div><div>│ ├── maps</div><div>│ └── waveform</div><div>│&nbsp;&nbsp; </div><div>├── <strong>03_Shape&kml</strong></div><div>└── <strong>04_GA_Layer_Earth_inversion</strong></div><div> ├── * survey_block_Name</div><div> ├── GA_georef_sections</div><div> │ ├── linear-stretch</div><div> │ └── log-stretch</div><div> ├── GA_Inverted_conductivity_models</div><div> ├── GA_multiplots</div><div> └── GA_sgrids</div><div> </div>

  • <p>This package contains Airborne Electromagnetic (AEM) data from the “SkyTEM helicopter EM Ord-Keep rivers region” survey which was flown over the Ord-Keep Rivers Region, Western Australia/Northern Territory, Australia during May - June 2017. High resolution magnetics were also acquired during the flights. As shown in Figure 1, the area is located in the 1:250000 map sheets of SD52-14 (Cambridge Gulf), SD52-11 (Port Keats) and SD 52-15 (Auvergne) near the town of Kununurra. 8100 line km of TEM and magnetic data were acquired. The projected grid coordinates have been supplied in GDA94 MGA Zone 52. <p>The aim of the survey is to provide geophysical information to support investigations of the regional groundwater system and identify regional groundwater sources. It will provide data to allow for the modelling of the following at a reconnaissance scale: <p>a) trends in regolith thickness and variability <p>b) variations in bedrock conductivity <p>c) conductivity of key bedrock (lithology related) conductive units under cover <p>d) the groundwater resource potential of the region <p>e) palaeovalley systems known to exist in the region. <p>This report lists the SkyTEM system information and specifications relevant for this survey, and describes the processing carried out on the data. <p>Geoscience Australia commissioned the survey as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region (https://www.ga.gov.au/eftf).

  • AusAEM-WA, Southwest-Albany Airborne Electromagnetic Survey Blocks:: SkyTEM® airborne electromagnetic data and GALEI inversion conductivity estimates The accompanying data package, titled “AusAEM-WA, Southwest-Albany Airborne Electromagnetic Survey Blocks:: SkyTEM® airborne electromagnetic data and GALEI inversion conductivity estimates”, was released on 4 November 2021 by Geoscience Australia (GA) and the Geological Survey of Western Australia. The data represents the first phase of the AusAEM2020 (WA) survey flown with a with a rotary aircraft contracted to Geoscience Australia, using the SkyTEM® airborne electromagnetic system. The survey was flown at a 20-kilometre nominal line spacing over the most south-western part and down to the southern coast of Western Australia. The area encompasses close to 12,500 line kilometres of newly acquired airborne electromagnetic geophysical data. This package contains the total (~12,500) of survey data which have been quality-controlled, processed, modelled and inverted both by the contractor and by GA. The survey was divided in four blocks, flown east-west and north-south direction. Since the survey covers two standard UTM zones 50 and 51, wherever projected Map Grid of Australia (MGA) easting and northing coordinates are used they are referenced to MGA Zone 50. All four block’s projected grid coordinates have been supplied in GDA2020 MGA Zone 50 datum, and contain the geodetic latitude and longitude WGS84 coordinate fields Geoscience Australia and Western Australia (Department of Mines, Industry Regulation and Safety) commissioned the AusAEM 2020 survey as part of the national airborne electromagnetic acquisition program, to complete 20km line separation AEM coverage over WA. The program is designed to deliver freely available pre-competitive geophysical data to assist in the investigation and discovery of potential mineral, energy and groundwater resources within Australia. Funding for the survey came from the Western Australian government’s Exploration Incentive Scheme. Geoscience Australia managed the survey data acquisition, processing, contracts, quality control of the survey and generated the inversion products included in the data package. The data release package contains 1. A data release package summary PDF document. 2. The survey logistics and processing report. 3. KML and Shapefiles for the regional flight lines. 4. Final processed point located line data in ASEG-GDF2 format. 5. Conductivity estimates generated by SkyTEM’s Workbench. 6. Conductivity estimates and products (suitable for various 3D packages) generated by Geoscience Australia's Layered Earth Inversion algorithm.

  • <div>Surface magnetic resonance (SMR) techniques image subsurface water using the electromagnetic response of resonant hydrogen nuclei in water. Here we introduce the SMRPInv (Surface Magnetic Resonance Probabilistic Inversion) package, which couples a high-performance forward modeller for SMR data, and a Gaussian process based non-linear Bayesian inversion. Both the forward and inverse codes are part of the freely available, open source HiQGA (High Quality Geophysical Analysis) codebase written entirely in Julia. We summarise the relevant forward physics, the necessary data processing of free induction decay at an SMR sounding, followed by the estimation of subsurface water content with a non-linear parameterisation. Results are presented for synthetic inversions as well as field data from Western Davenport (Northern Territory). Comparisons are made against downhole logging data, together with results from a deterministic inversion of the same SMR soundings. Through this, we demonstrate that a probabilistic approach is key to conceptualising variability of subsurface water content.&nbsp;</div>