From 1 - 5 / 5
  • <div>This was the last of five presentations held on 31 July 2023 as part of the National Groundwater Systems Workshop. Towards developing a 3D hydrogeological framework for Australia: A common chronostratigraphic framework for aquifers&nbsp;</div><div><br></div>

  • Geoscience Australia’s regional assessments and basin inventories are investigating Australia’s groundwater systems to improve knowledge of the nation’s groundwater potential under the Exploring for the Future (EFTF) Program and Geoscience Australia’s Strategy 2028. Where applicable, integrated basin analysis workflows are being used to build geological architecture advancing our understanding of hydrostratigraphic units and tie them to a nationally consistent chronostratigraphic framework. Here we focus on the Great Artesian Basin (GAB) and overlying Lake Eyre Basin (LEB), where groundwater is vital for pastoral, agricultural and extractive industries, community water supplies, as well as supporting indigenous cultural values and sustaining a range of groundwater dependent ecosystems such as springs and vegetation communities. Geoscience Australia continued to revise the chronostratigraphic framework and hydrostratigraphy for the GAB infilling key data and knowledge gaps from previous compilations. In collaboration with Commonwealth and State government agencies, we compiled and standardised thousands of boreholes, stratigraphic picks, 2D seismic and airborne electromagnetic data across the GAB. We undertook a detailed stratigraphic review on hundreds of key boreholes with geophysical logs to construct consistent regional transects across the GAB and LEB, using geological time constraints from hundreds of boreholes with existing and newly interpreted biostratigraphic data. We infilled the stratigraphic correlations along key transects across Queensland, New South Wales, South Australia and Northern Territory borders to refine nomenclature and stratigraphic relationships between the Surat, Eromanga and Carpentaria basins, improving chronostratigraphic understanding within the Jurassic to Cretaceous units. We extended the GAB geological framework to the overlying LEB to better resolve the Cenozoic stratigraphy and potential hydrogeological connectivity. New data and information fill gaps and refine the previous 3D hydrogeological model of the entire GAB and LEB. The new 3D geological and hydrostratigraphic model provides a framework to integrate additional hydrogeological and rock property data. It assists in refining hydraulic relationships between aquifers within the GAB and provides a basis for developing more detailed hydrogeological system conceptualisations. This is a step towards the future goal of quantifying hydraulic linkages with underlying basins, and overlying Cenozoic aquifers to underpin more robust understanding of the hydrogeological systems within the GAB. This approach can be extended to other regional hydrogeological systems. This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)

  • <div>The Curnamona Province and overlying basins (herein referred to as the Broken Hill region) contain many discrete groundwater systems. These include sedimentary aquifers of the Lake Eyre Basin, Eromanga Basin, Darling Basin and Arrowie Basin, as well as fractured rock aquifers of the Adelaide Superbasin and Curnamona Province. However, there is little known about the hydrogeology or hydrogeochemistry of these aquifers in the Broken Hill region. Given the semi-arid climate in this region, understanding these groundwater systems can better support sustainable use of the groundwater for agriculture, mining and potable water supplies.</div><div>&nbsp;</div><div>Aquifer attribution provides a fundamental starting point for any hydrogeological study. We will present recently released hydrogeochemical data for the Broken Hill region, and our subsequent process for assessing and attributing hydrostratigraphy to the samples. </div><div>The Broken Hill Groundwater Geochemistry dataset (BHGG) was recently released in its entirety (Caritat et al. 2022 http://dx.doi.org/10.11636/Record.2022.020). It contains a compilation of archival CRC LEME hydrochemistry data that was collected as part of several projects from 1999 to 2005. This high-quality dataset contains 275 groundwater samples and includes a comprehensive suite of majors, minors, trace elements and stable isotopes (δ34S, δ18O, δ2H, δ13C, 87Sr/86Sr, 208/207/206Pb/204Pb). </div><div> At the time of collection, some key bore metadata (e.g. bore depths, screen and aquifer information) were missing from the original data compilations and these metadata are crucial for any hydrogeological analysis and interpretation. Therefore, as part of the new BHGG data release we have developed a robust and consistent approach to add bore information and aquifer attribution, value-adding to the original BHGG chemical and isotopic data. This workflow utilises a combination of State databases, reports, field notes, drillhole compilations and geological maps, but still relied on local hydrological expertise to make decisions when encountering incomplete or conflicting information (which is reflected by a confidence rating on the attribution). </div><div> The resulting BHGG product has supported re-assessment of the key hydrogeological and geochemical knowledge gaps in each groundwater system. An overview of knowledge gaps and the new sampling program being undertaken will be included in the presentation. &nbsp;</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • A dynamic modelling study was undertaken to assess the feasibility of a planned CO2 injection experiment into a shallow fault at the CO2CRC’s Otway Research Facility. The aim was to identify key physical properties that strongly influence migration behaviour but are presently unmeasured. Two different simulators (CMG-GEM and TOUGH2) were used to model this experiment. Both simulation efforts indicate that the proposed experiment is feasible, but show the need for better data on the maximum injection pressure and the permeability distribution in the near-surface region (including the continuity of the clay layer). During the simulation with high injection rate, there could be a rapid accumulation of CO2 at the early injection stage due to the constraints of maximum injection pressure. The modelling results suggest that the dominant trapping mechanisms are likely to be free CO2 gas trapped by the upper clay layer and residual trapping. The total amount of CO2 that could be injected increased with greater injection pressure, injection rate and maximum residual gas saturation. The results suggest that dissolution of CO2 is likely to continue to increase during the injection and post-injection stages. After the CO2 injection phase, the gas was found to spread laterally within the reservoir and moved upward along the permeable grid cells at the modelled fault. A comparison between the modelling approaches suggests that if there is a desire to have CO2 migrate up the fault and reach the upper clay layer, it will be important to conduct the injection experiment at the most permeable sections of the fault and inject CO2 into a shallow high permeability layer. It is necessary to clarify whether there is an unsaturated zone beneath the clay layer as this is speculated to exist but is unknown.

  • <div>The Kati Thanda – Lake Eyre Basin (KT–LEB) covers about 1.2 million square kilometres of outback Australia. Although the basin is sparsely populated and relatively undeveloped it hosts nationally significant environmental and cultural heritage, including unique desert rivers, sweeping arid landscapes, and clusters of major artesian springs. The basin experiences climatic extremes that intermittently cycle between prolonged droughts and massive inland floods, with groundwater resources playing a critical role in supporting the many communities, industries, ecological systems, and thriving First Nations culture of the KT–LEB.</div><div><br></div><div>As part of Geoscience Australia’s National Groundwater Systems Project (in the Exploring for the Future Program) this report brings together contemporary data and information relevant to understanding the regional geology, hydrogeology and groundwater systems of Cenozoic rocks and sediments of the KT–LEB. This work represents the first whole-of-basin assessment into these vitally important shallow groundwater resources, which have previously received far less scientific attention than the deeper groundwater systems of the underlying Eromanga Basin (part of the Great Artesian Basin). The new knowledge and insights about the geology and hydrogeology of the basin generated by this study will benefit the many users of groundwater within the region and will help to improve sustainable management and use of groundwater resources across the KT–LEB.</div><div><br></div>