From 1 - 10 / 100
  • A multihazard (volcano, earthquake, tsunami) assessment for East New Britain Province, Papua New Guinea.

  • The Bushfire Attack Level Toolbox provides access to ArcGIS geoprocessing scripts that calculate the Bushfire Attack Level (BAL) as per Method 1 in AS-3959 (2009). BAL is a measure of the severity of a building's potential exposure to ember attack, radiant heat and direct flame contact in the event of a bushfire. It serves as a basis for establishing the requirements for construction to improve protection of building elements from attack by bushfire. The BAL Maps and Exposure report provide maps of three communities in Western Australia, with indicative BAL levels, and the aggregate inventory of assets and population exposed to the different levels of BAL.

  • The local magnitude ML 5.4 (MW 5.1) Moe earthquake on 19 June 2012 that occurred within the Australian stable continental region was the largest seismic event for the state of Victoria for more than 30 years. Seismic networks in the southeast Australian region yielded many high-quality recordings of the moderate-magnitude earthquake mainshock and its largest aftershock (ML 4.4; MW 4.3) at a hypocentral range of 10 to 480 km. The source and attenuation characteristics of the earthquake sequence are analyzed. Almost 15,000 felt reports were received following the main shock, which tripped a number of coal-fired power generators in the region, amounting to the loss of approximately 1955 megawatts of generation capacity. The attenuation of macroseismic intensities are shown to mimic the attenuation shape of Eastern North America (ENA) models, but require an inter-event bias to reduce predicted intensities. Further instrumental ground-motion recordings are compared to ground-motion models (GMMs) considered applicable for the southeastern Australian (SEA) region. Some GMMs developed for ENA and for SEA provide reasonable estimates of the recorded ground motions of spectral acceleration within epicentral distances of approximately 100 km. The mean weighted of the Next Generation Attenuation-East GMM suite, recently developed for stable ENA, performs relatively poorly for the 2012 Moe earthquake sequence, particularly for short-period accelerations.

  • Geoscience Australia has produced an Atlas of Australian earthquake scenarios (the Atlas) to support planning and preparedness operations for emergency management agencies. The Atlas provides earthquake scenarios represent realistic “worst-case” events that may impact population centres around Australia. Such scenarios may also support seismic risk assessments for critical infrastructure assets to inform remediation actions that could be taken to improve resilience to rare seismic events in Australia. The Atlas of seismic scenarios uses the underlying science and data of the 2018 National Seismic Hazard Assessment (NSHA18) to identify the magnitudes and epicentre locations of these hypothetical earthquakes. Locations and magnitudes of earthquake scenarios are based upon deaggregation of the NSHA18 hazard model. The USGS ShakeMap software is used to produce ground motion intensity fields with the shaking levels being modified by seismic site conditions mapped at a national scale. Fault sources are incorporated into the Atlas where the magnitude of a given scenario exceeds a threshold magnitude of 6.0 and where the rupture length is likely to be longer than 10 km. If a scenario earthquake is located near a known fault within the Australian Neotectonic Features database, a partial or full-length rupture is modelled along the mapped fault. The Atlas generated two scenarios for each of the160 localities across Australia. The scenarios are based on some of the most likely earthquake magnitude-distance combinations estimated at each site. Output products include shaking contours for a range of intensity measures, including peak acceleration and velocity, as well as response spectral acceleration for 0.3, 1.0 and 3.0 seconds. Also included are raster images and the associated metadata used for generating the scenarios.

  • The Bushfire Attack Level Toolbox provides access to ArcGIS geoprocessing scripts that calculate the Bushfire Attack Level (BAL) as per Method 1 in AS3959-2009. BAL is a measure of the severity of a building's potential exposure to ember attack, radiant head and direct flame contact. It is defined in AS3959-2009 to serve as a basis for establishing the requirements for construction to improve protection of building elements from attack by bushfire. In the BAL Toolbox, the calculation method (as defined in AS3959-2009) is adapted to be applied spatially. Input information required are a digital elevation model and classified vegetation data. The BAL Toolbox allows users to calculate BAL for small regions, without the need for large computational resources or for executing code in command-line environments. This will provide stakeholders with the ability to efficiently generate rigorous and robust maps of Bushfire Attack Level that adhere to the national standard, compared to products generated by manual techniques. The BAL Toolbox code is written in Python, utilising the ArcGIS "arcpy" module to enable easy reading/writing of raster data and to provide methods for a graphical user interface in the standard ArcGIS tool style. The BAL Toolbox User Guide provides users an overview of the Toolbox, instructions on installation, any customisations execution and evaluation of results.

  • The TCRM Stochastic Event Catalogue contains artificially generated tropical cyclone tracks and wind fields representing 10000 years of tropical cyclone activity. The catalogue is stored by year, with a track file and wind field file. The wind field file contains the maximum wind speed from all events occuring in the corresponding track file (i.e. it represents annual maximum wind speeds).

  • In the last few years there have been several probabilistic seismic hazard assessments (PSHA) of Adelaide. The resulting 500 year PGA obtained are 0.059, 0.067, 0.109 and 0.141. The differences between the first three are readily accounted for by choice of GMPE, how faults are included and differences in recurrence estimation, with each of these having a similar level of importance. As no GMPEs exist for the Mt Lofty and Flingers Ranges the choices of GMPEs were all based on geological analogies. The choice of at what weighting to include low attenuation, that is a stable continental crust, GMPE was most important. At a return period of 500 year the inclusion of faults was not necessarily significant. The choice of whether the faults behaved with Characteristic or Gutenberg-Richter recurrence statistics had the highest impact on the hazard with the choice of slip rate the next most important. A low slip rate Characteristic fault, while increasing the hazard for longer return periods (i.e. ~2500 years), results in only a minor increase at 500 years. The magnitude frequency distribution b-value for the four studies were 1.043, 0.88, 0.915 and 0.724. For the same activity in the magnitude range of 3.0 to 3.5, the activity level at M 6.0 is an order of magnitude higher for a b-value of 0.724 compared to a b-value of 1.043. This increase in activity rate of larger earthquakes significantly increases the hazard. The average of the first three studies is 0.078±0.022 (0.056 -0.100) g. This range is reflecting the intrinsic uncertainty in calculating PSHAs where many of the inputs are poorly constrained. The results for the highest hazard level PSHA study (i.e. 0.141g) can be explained by their use of a low b-value (i.e. 0.724). M. Leonard1, R. Hoult2, P. Somerville3, G. Gibson2, D. Sandiford2, H. Goldsworthy2, E. Lumantarna2 and S Spiliopoulos1. 1Geoscience Australia, 2The University of Melbourne, 3 URS

  • Summary XML files complying with the Australian Flood Study Data Model including one file for each Jurisdiction and on All-in-one file.

  • Probabilistic seismic hazard map of Papua New Guinea, in terms of Peak Ground Acceleration, is developed for return period of 475 years. The calculations were performed for bedrock site conditions (Vs30=760 m/s). Logic-tree framework is applied to include epistemic uncertainty in seismic source as well as ground-motion modelling processes. In this regard two source models, using area source zones and smoothed seismicity, are developed. Based on available geological and seismological data, defined seismic sources are classified into 4 different tectonic environments. For each of the tectonic regimes three Ground Motion Prediction Equations are selected and used to estimate the ground motions at a grid of sites with spacing of 0.1 degree in latitude and longitude. Results show high level of hazard in the coastal areas of Huon Peninsula and New Britain/ Bougainville regions and relatively low level of hazard in the southern part of the New Guinea highlands block. In Huon Peninsula, as shown by seismic hazard disaggregation results, high level of hazard is caused by modelled frequent moderate to large earthquakes occurring at Ramu-Markham Fault zone. On the other hand in New Britain/Bougainville region, the geometry and distance to the subduction zone along New Britain Trench mainly controls the calculated level of hazard. It is also shown that estimated level of PGAs is very sensitive to the selection of GMPEs and overall the results are closer to the results from studies using more recent ground-motion models.

  • <p>A new finite volume algorithm to solve the two dimensional shallow water equations on an unstructured triangular mesh has been implemented in the open source ANUGA software, which is jointly developed by the Australian National University and Geoscience Australia. The algorithm supports discontinuous-elevation, or 'jumps' in the bed profile between neighbouring cells. This has a number of benefits compared with previously implemented continuous-elevation approaches. Firstly it can preserve stationary states at wet-dry fronts without using any mesh porosity type treatment. It can also simulate very shallow frictionally dominated flow down sloping topography, as typically occurs in direct-rainfall flood models. In the latter situation, mesh porosity type treatments lead to artificial storage of mass in cells and associated mass conservation issues, whereas continuous elevation approaches with good performance on shallow frictionally dominated flows tend to have difficulties preserving stationary states near wet-dry fronts. The discontinuous elevation approach shows good performance in both situations, and mass is conserved to a very high degree, consistent with floating point error. <p>A further benefit of the discontinuous-elevation approach, when combined with an unstructured mesh, is that the model can sharply resolve rapid changes in the topography associated with e.g. narrow prismatic drainage channels, or buildings, without the computational expense of a very fine mesh. The boundaries between such features can be embedded in the mesh using breaklines, and the user can optionally specify that different elevation datasets are used to set the elevation within different parts of the mesh (e.g. often it is convenient to use a raster DEM in terrestrial areas, and surveyed channel bed points in rivers). <p>The discontinuous elevation approach also supports a simple and computationally efficient treatment of river walls. These are arbitrarily narrow walls between cells, higher than the topography on either side, where the flow is controlled by a weir equation and optionally transitions back to the shallow water solution for sufficiently submerged flows. This allows modelling of levees or lateral weirs much finer than the mesh size. <p>A number of benchmark tests are presented illustrating these features of the algorithm, along with its application to urban flood hazard simulation and comparison with field data. All these features of the model can be run in serial or parallel, on clusters or shared memory machines, with good efficiency on 10s - 100s of cores depending on the number of mesh triangles and other case-specific details.