From 1 - 10 / 27
  • Sediment grainsize and compositional data is presented for the East Antarctic region (30-150ºE) south of 60ºS to provide insight into the nature of habitats available for benthic communities. This compilation of sedimentary properties incorporates data collected and analysed from the 1950s to 2012. Sediment grainsize data is presented from quantitative analyses (472 samples) and Folk classifications (an additional 192 samples), and composition data is presented for calcium carbonate (255 samples) and biogenic silica (304 samples). Sedimentary properties are a key environmental layer for understanding the nature and diversity of benthic habitats. In this report, sediment grainsize and composition data are overlain on maps of bathymetry and geomorphic features, to further illustrate key variations in seabed habitats. The Antarctic shelf is typically dissected by deep troughs and channels, and these form sediment depocenters for fine grained biosiliceous material. Shelf banks, by contrast, are typically composed of coarser sands and gravels due to their exposure to stronger currents and frequent iceberg scouring. The continental slope is heavily eroded into rugged canyons which also contain coarser sediments due to reworking by down slope processes. In several regions, high carbonate content occurs at the shelf break, associated with areas of known hydrocoral occurrence. These variations in physical properties across the Antarctic shelf and slope create distinct habitats for seabed communities. Maps of sediment type, together with broader-scale maps of geomorphic features, can therefore guide understanding of the nature and distribution of seabed habitats in East Antarctica, and particularly within the seven proposed Marine Protected Areas (MPAs) within this region. Sedimentary and geomorphic properties are shown to be highly variable within these MPAs, indicating that these areas likely support a wide variety of benthic communities.

  • This dataset provides the spatially continuous data of seabed gravel (sediment fraction >2000 µm), mud (sediment fraction < 63 µm) and sand content (sediment fraction 63-2000 µm) expressed as a weight percentage ranging from 0 to 100%, presented in 0.0025 decimal degree (dd) resolution raster grids format and ascii text file. The dataset covers the Petrel sub-basin in the Australian continental EEZ. This dataset supersedes previous predictions of sediment gravel, mud and sand content for the basin with demonstrated improvements in accuracy. Accuracy of predictions varies based on density of underlying data and level of seabed complexity. Artefacts occur in this dataset as a result of insufficient samples in relevant regions. This dataset is intended for use at the basin scale. The dataset may not be appropriate for use at smaller scales in areas where sample density is insufficient to detect local variation in sediment properties. To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that additional samples be collected and interpolations updated.

  • ESRI Grids of available bathymetry within the bounds of proposed Marine Protected Areas in the Antarctic. Interpolated datasets are also included.

  • The Australian Government is investing in a world first analysis platform for satellite imagery and other Earth observations. From sustainably managing the environment to developing resources and optimising our agricultural potential, Australia must overcome a number of challenges to meet the needs of our growing population. Digital Earth Australia (DEA) will deliver a unique capability to process, interrogate, and present Earth observation satellite data in response to these issues. It will track changes across Australia in unprecedented detail, identifying soil and coastal erosion, crop growth, water quality, and changes to cities and regions. DEA will build on the globally recognised innovation, the Australian Geoscience Data Cube1; which was the winner of the 2016 Content Platform of the Year at the Geospatial World Leadership Awards and was developed as a partnership between GA, CSIRO and the National Collaborative Research Infrastructure Strategy (NCRIS) supported National Computational Infrastructure (NCI).

  • Geoscience Australia defines a borehole as the generalized term for any narrow shaft drilled in the ground, either vertically or horizontally, and would include Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types, but does not include Costean, Trench or Pit. For the purposes of a Water Well as defined by Groundwater ML v1.0, the dataset has been restricted to onshore Australian boreholes only, and bores that have the potential to support assessment of groundwater resources, within a Bioregional Assessment.

  • This video explains the concept behind Geoscience Australia's Data Cube, a new way of organising, analysing and managing the large amounts of data collected from Earth Observation Satellites (EOS) studies over time. The Data Cube facilitates efficient data analysis and enables users to interrogate Australia's EOS data from the past and present. It is hoped that the Data Cube will become a useful tool used by remote sensing scientists and data analysts to extract information to support for informing future decision-making and policy development within Australia.

  • Marine visual imaging has become a major assessment tool in the science, policy and public understanding of our seas and oceans. The technology to acquire and process this imagery has significantly evolved in recent years through the development of new camera platforms, camera types, lighting systems and analytical software. These advances have led to new challenges in imaging, including storage and management of `big data, manipulation of digital photos, and the extraction of biological and ecological data. The need to address these challenges, within and beyond the scientific community, is set to substantially increase in the near future, as imaging is increasingly used in the designation and evaluation of marine conservation areas, and for the assessment of environmental baselines and impact monitoring for maritime industry. We review the state of the theory, techniques and technologies associated with each of the steps of marine imaging for observation and research, and to provide an outlook on the future from this active scientific and engineering community that develops and uses it.

  • Spatially continuous information is often required for environmental planning and conservation. Spatial modelling methods are essential for generating such information from point samples. The accuracy of spatial predictions is crucial for evidence-based decision making and often affected by many factors. Spatial reference systems can alter the features of spatial data and thus are expected to affect the predictions of spatial modelling methods. However, the degree to which such systems can affect the predictions has not been examined yet. It is not clear whether such effect changes with spatial modelling methods neither. In this study, we aim to test how sensitive spatial modelling methods are to different spatial reference systems. On the basis of a review of different spatial reference systems, we select eight systems that are suitable for environmental variables for the Australian Exclusive Economic Zone. We apply two most commonly used spatial interpolation methods to a marine dataset that is projected using the eight systems. Finally we assess the accuracy of the methods using leave-one-out cross validation in terms of their predictive errors. The sensitivities of the spatial modelling methods to the eight spatial reference systems are then analyzed. The data manipulation and modelling work are implemented in ArcGIS and R. In this paper, we discuss the testing results; examine the spatial predictions visually; and discuss the implications of the findings on spatial predictions in the marine environmental sciences. The outcomes of this study can be applied to the spatial predictions of both marine and terrestrial environmental variables. ModSim 2013, Adelaide, South Australia

  • In this study, we aim to identify the most accurate methods for spatial prediction of seabed gravel content in the northwest Australian Exclusive Economic Zone. We experimentally examined: 1) whether input secondary variables affect the performance of RFOK and RFIDW, 2) whether the performances of RF, SIMs and their hybrid methods are data-specific, and 3) whether model averaging improves predictive accuracy of these methods in the study region. For RF and the hybrid methods, up to 21 variables were used as predictors. The predictive accuracy was assessed in terms of relative mean absolute error and relative root mean squared error based on the average of 100 iterations of 10-fold cross validation. In this study, the following important findings were achieved: - the predictive errors fluctuate with the input secondary variables; - the existence of correlated variables can alter the results of model selection, leading to different models; - the set of initial input variables affects the model selected; - the most accurate model can be missed out during the model selection; - RF, RFOK and RFIDW prove to be the most accurate methods in this study, with RFOK preferred; and these methods are not data-specific, but their models are, so best model needs to be identified; and - Model averaging is clearly data-specific. In conclusion, model selection is essential for RF and the hybrid methods. RF and the hybrid methods are not data-specific, but their models are. RFOK is the most accurate method. Model averaging is also data-specific. Hence best model needs to be identified for individual studies and application of model averaging should also be examined accordingly. RF and the hybrid methods have displayed substantial potentials for predicting environmental properties and are recommended for further test for spatial predictions in environmental sciences and other relevant disciplines in the future. This study provides suggestions and guidelines for improving the spatial predictions of biophysical variables in both marine and terrestrial environments.

  • Presentation to be delivered at the Western Australian Marine Science Institution Symposium, Fremantle, 21 February Abstract text: Geoscience Australia, as the Australian Government's geoscience agency, has a long history of marine environment mapping and research on the North West Shelf of Australia. In recent times, several data acquisition surveys have been completed and subsequent interpretive products have been produced under Commonwealth Government programmes, including: the Offshore Energy Security Program (2006-2011); the Marine Biodiversity Hub under the Commonwealth Environmental Research Facilities (CERF) and the National Environmental Research Program (NERP), and; the National CO2 Infrastructure Plan (NCIP, 2011-15). Collaborations, such as those facilitated by CERF and NERP, and with the Australian Institute of Marine Science (AIMS), have resulted in further work in the region. Areas of investigation have included the North Perth Basin, Bonaparte Gulf and Timor Sea. Using data from these surveys and other sources, GA is continuing to develop regional-scale seabed datasets, including bathymetry, geomorphology, sediment properties, seabed disturbance and seabed hardness that are publicly available via the internet. A pilot program was started in 2010 to collate and archive environmental data generated by the offshore petroleum industry, with a focus on the North West Shelf. Geoscience Australia is currently undertaking marine surveys to provide seabed environmental information to support assessments of the CO2 storage potential of several offshore sedimentary basins under NCIP. A marine survey over the Browse Basin in May 2013, to be undertaken in collaboration with the AIMS, will acquire high-resolution bathymetry and information on seabed and shallow subsurface geology and ecology. Follow-up surveys are also proposed during 2013-2015. The Browse survey results will be publicly released as a data package integrating existing and the newly acquired seabed data, and in a report to the Department of Resources Energy and Tourism on the CO2 storage potential of selected areas of the Browse Basin.