Australia's Resources Framework
Type of resources
Keywords
Publication year
Topics
-
The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 3 - 17th August talks included: Geological Processes and Resources Session Large scale hydrogen storage: The role of salt caverns in Australia’s transition to net zero – Dr Andrew Feitz Basin-Hosted Base Metal Deposits – Dr Evgeniy Bastrakov Upper Darling Floodplain: Groundwater dependent ecosystem assessment – Dr Sarah Buckerfield Atlas of Australian Mine Waste: Waste not, want not – Jane Thorne Resource Potential Theme National-scale mineral potential assessments: supporting mineral exploration in the transition to net zero – Dr Arianne Ford Australia’s Onshore Basin Inventories: Energy – Tehani Palu Prioritising regional groundwater assessments using the national hydrogeological inventory – Dr Steven Lewis Assessing the energy resources potential in underexplored regions – Dr Barry Bradshaw You can access the recording of the talks from YouTube here: <a href="https://youtu.be/pc0a7ArOtN4">2023 Showcase Day 3 - Part 1</a> <a href="https://youtu.be/vpjoVYIjteA">2023 Showcase Day 3 - Part 2</a>
-
Heavy minerals (HMs) have been used successfully around the world in energy and mineral exploration, yet in Australia no public domain database or maps exist that document the background HM assemblages or distributions. Here, we describe a project that delivers the world’s first continental-scale HM maps. We applied automated mineralogical identification and quantification of the HMs contained in floodplain sediments from large catchments covering most of Australia. The composition of the sediments reflects the dominant rock types in each catchment, with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering–transport–deposition cycle. Underpinning this vision was a pilot project, based on 10 samples from the national sediment sample archive, which in 2020 demonstrated the feasibility of a larger, national-scale project. Two tranches of the subsequent national HM dataset, one focusing on a 965,000 km2 region centred on Broken Hill in southeastern Australia, the other focusing on a 950,000 km2 area in northern Queensland and Northern Territory, were released in 2022. In those releases, over 47 million mineral grains were analysed in 411 samples, identifying over 150 HM species. We created a bespoke, cloud-based mineral network analysis (MNA) tool to visualize, explore and discover relationships between HMs as well as between them and geological settings or mineral deposits. We envisage that the Heavy Mineral Map of Australia and MNA tool, when released publicly by the end of 2023, will contribute significantly to mineral prospectivity analysis and modelling, particularly for technology critical elements and their host minerals <b>Citation:</b> Caritat P. de, Walker A.T., Bastrakov E. & McInnes B.I.A., 2023. From The Heavy Mineral Map of Australia: vision, implementation and progress. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/148678
-
Over 900 Australian mineral deposits, location and age data, combined with deposit classifications, have been used to assess temporal and spatial patterns of mineral deposits associated with convergent margins and allow assessment of the potential of poorly exposed or undercover mineral provinces and identification of prospective tracts within known mineral provinces. Here we present results of this analysis for the Eastern Goldfields Superterrane and the Tasman Element, which illustrate end-members of the spectrum of convergent margin metallogenic provinces. Combining our Australian synthesis with global data suggest that after ~3000 Ma these provinces are characterised by a reasonably consistent temporal pattern of deposit formation, termed the convergent margin metallogenic cycle (CMMC): volcanic-hosted massive sulfide – calc-alkalic porphyry copper – komatiite-associated nickel sulfide → orogenic gold → alkalic porphyry copper – granite-related rare metal (Sn, W and Mo) – pegmatite. Between ca 3000 Ma and ca 800 Ma, virtually all provinces are characterised by a single CMMC, but after ca 800 Ma, provinces mostly have multiple CMMCs. We interpret this change in metallogeny to reflect secular changes in tectonic style, with single-CMMC provinces associated with warm, shallow break-off subduction, and multiple-CMMC provinces associated with modern-style cold, deep break-off subduction. These temporal and spatial patterns can be used to infer potential for mineralisation outside well-established metallogenic tracts. <b>Citation:</b> Huston D. L., Doublier M. P., Eglington B., Pehrsson S., Mercier-Langevin P. & Piercey S., 2022. Convergent margin metallogenic cycling in the Eastern Goldfields Superterrane and Tasman Element. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/147037
-
Australian iron ore is predominantly exported and used for steelmaking internationally. However, steelmaking is an energy- and carbon-intensive heavy industry, and its electrification in the coming decades will likely disrupt the existing iron ore–steel value chains. Green steel—produced using hydrogen and electricity from renewable energy sources—presents both opportunities and challenges for Australia. Indeed, with abundant renewable energy potential and iron-ore resources, Australia could lead this global transformation. Here, we examine the interrelationships between the Australian iron-ore industry, the production of green-hydrogen from renewable energy sources, and an emergent green steelmaking process. In particular, we undertake detailed case studies to estimate current green steel production costs within two regions; the Pilbara Craton in Western Australia and the Eyre Peninsula in South Australia. While existing technology is not well suited to Australian hematite ores, our analysis highlights the site-specific competitiveness of small-scale, magnetite-fed, off-grid operations. The results underscore the advantages of a well-optimised system in decreasing hydrogen and energy storage requirements, and decreasing production costs. While our results also suggest that grid-connected projects could reduce costs through flexible operation, more work is required to understand the limitations of these conclusions. The results underscore the need to develop technologies to utilise hematite ores in green steelmaking, but also highlight the opportunity for this emerging industry to commercialise Australia’s magnetite resources. <b>Citation: </b>Wang C., Walsh S. D. C., Haynes M. W., Weng Z., Feitz A., Summerfield D., & Lutalo I., 2022. From Australian iron ore to green steel: the opportunity for technology-driven decarbonisation. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/147005
-
The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 1 - 15th August talks included: Resourcing net zero – Dr Andrew Heap Our Geoscience Journey – Dr Karol Czarnota You can access the recording of the talks from YouTube here: <a href="https://youtu.be/uWMZBg4IK3g">2023 Showcase Day 1</a>
-
Improvements in discovery and management of minerals, energy and groundwater resources are spurred along by advancements in surface and subsurface imaging of the Earth. Over the last half decade Australia has led the world in the collection of regionally extensive airborne electromagnetic (AEM) data coverage, which provides new constraints on subsurface conductivity structure. Inferring geology and hydrology from conductivity is non-trivial as the conductivity response of earth materials is non-unique, but careful calibration and interpretation does provide significant insights into the subsurface. To date utility of this new data is limited by its spatial extent. The AusAEM survey provides conductivity constraints every 12.5 m along flight lines with no constraints across vast areas between flight lines spaced 20 km apart. Here we provide a means to infer the conductivity between flight lines as an interim measure before infill surveys can be undertaken. We use a gradient boosted tree machine learning algorithm to discover relationships between AEM conductivity models across northern Australia and other national data coverages for three depth ranges: 0–0.5 m, 9–11 m and 22–27 m. The predictive power of our models decreases with depth but they are nevertheless consistent with our knowledge of geological, landscape evolution and climatic processes and an improvement on standard interpolation methods such as kriging. Our models provide a novel complementary methodology to gridding/interpolating from AEM conductivity alone for use by the mining, energy and natural resource management sectors. <b>Citation: </b>Wilford J., Ley-Cooper Y., Basak S., & Czarnota K., 2022. High resolution conductivity mapping using regional AEM survey and machine learning. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146380.
-
The High Quality Geophysical Analysis (HiQGA) package is a fully-featured, Julia-language based open source framework for geophysical forward modelling, Bayesian inference, and deterministic imaging. A primary focus of the code is production inversion of airborne electromagnetic (AEM) data from a variety of acquisition systems. Adding custom AEM systems is simple using Julia’s multiple dispatch feature. For probabilistic spatial inference from geophysical data, only a misfit function needs to be supplied to the inference engine. For deterministic inversion, a linearisation of the forward operator (i.e., Jacobian) is also required. HiQGA is natively parallel, and inversions from a full day of production AEM acquisition can be inverted on thousands of CPUs within a few hours. This allows for quick assessment of the quality of the acquisition, and provides geological interpreters preliminary subsurface images of EM conductivity together with associated uncertainties. HiQGA inference is generic by design – allowing for the analysis of diverse geophysical data. Surface magnetic resonance (SMR) geophysics for subsurface water-content estimation is available as a HiQGA plugin through the SMRPInversion (SMR probabilistic inversion) wrapper. The results from AEM and/or SMR inversions are used to create images of the subsurface, which lead to the creation of geological models for a range of applications. These applications range from natural resource exploration to its management and conservation.
-
The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 2 - 16th August talks included: Highways to Discovery and Understanding Session AusAEM - Unraveling Australia's Landscape with Airborne Electromagnetics – Dr Yusen Ley Cooper Exploring for the Future Data Discovery Portal: A scenic tour – Simon van der Wielen Towards equitable access to regional geoscience information– Dr Kathryn Waltenberg Community engagement and geoscience knowledge sharing: towards inclusive national data and knowledge provision – Dr Meredith Orr Foundational Geoscience Session The power of national scale geological mapping – Dr Eloise Beyer New surface mineralogical and geochemical maps of Australia – Dr Patrice de Caritat Imaging Australia’s Lithospheric Architecture – Dr Babak Hejrani Metallogenic Potential of the Delamerian Margin– Dr Yanbo Cheng You can access the recording of the talks from YouTube here: <a href="https://youtu.be/ZPp2sv2nuXI">2023 Showcase Day 2 - Part 1</a> <a href="https://youtu.be/dvqP8Z5yVtY">2023 Showcase Day 2 - Part 2</a>
-
<div>Lithospheric structure and composition have direct relevance for our understanding of mineral prospectivity. Aspects of the lithosphere can be imaged using geophysical inversion or analysed from exhumed samples at the surface of the Earth, but it is a challenge to ensure consistency between competing models and datasets. The LitMod platform provides a probabilistic inversion framework that uses geology as the fabric to unify multiple geophysical techniques and incorporates a priori geochemical information. Here, we present results from the application of LitMod to the Australian continent. The rasters summarise the results and performance of a Markov-chain Monte Carlo sampling from the posterior model space. Release KY22 is developed using the primary-mode Rayleigh phase velocity grids of Yoshizawa (2014).</div><div><br></div><div>Geoscience Australia's Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia's geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia's transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia's regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>
-
<div>This contribution presents the distribution and geology of Australian alkaline and related rocks of Paleozoic age, one in a series within the Alkaline Rocks Atlas of Australia that collectively document alkaline rocks across the continent through time. </div><div><br></div><div>In general, alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically thought to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism, which may have been important in their generation, or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and/or enrichments in their source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere. They are also directly related to metallogenesis and mineralisation, particularly for a number of the critical minerals, e.g., rare earth elements, niobium. In light of this, Geoscience Australia is undertaking a compilation of the distribution and geology of Australian alkaline and related rocks, of all ages, and producing a GIS and associated database of such rocks, to both document such rocks and for use in metallogenic and mineral potential studies. </div><div><br></div><div>The broadening of the definition of alkaline rocks within the Alkaline Rocks Atlas herein, to include ultra-high K mafic to felsic silica-saturated rocks (alkaline-shoshonites), which are commonly formed at convergent margin settings, manifests in some divergences in the presentation of alkaline rocks that are particularly relevant to the Phanerozoic, and Paleozoic Australia in particular. </div><div><br></div><div>Paleozoic alkaline and related rocks occur throughout eastern Australia, with occurrences in the Northern Territory, and in all States excluding Western Australia. However, with a few exceptions they are principally located within the Tasman Element, and are over-represented in NSW – with respect to other states jurisdictions (based on available data). Paleozoic alkaline rocks range from ultramafic through to felsic, and from strongly alkaline (undersaturated) through to mildly alkaline. </div><div><br></div><div>Strongly alkaline rocks – congruent with the outline of alkaline rocks presented above – are comparatively rare in the Paleozoic, and are compositionally diverse incorporating alkali basalt, kimberlite, carbonatite-related rocks, and lamprophyre, with wide-ranging ages. </div><div><br></div><div>Overwhelmingly, the Paleozoic alkaline rock compilation is dominated by very high K alkali mafic to felsic silica-saturated rocks. Mafic-intermediate rocks within this grouping typically have an “arc signature” (i.e., low Nb/Y) but incorporate both arc magmas as well as rocks associated with backarc rifting. These rocks typically occur within rock units or packages that comprise a diverse array of rock types and compositions from volcanic rocks, related volcaniclastics and epiclastics through to sedimentary rocks. Igneous rocks within these packages commonly range from subalkaline / calc-alkaline through to mildly alkaline (trachybasalt to trachyandesite, and less commonly trachyte) based on alkali contents. Quartz-saturated felsic alkaline rocks are dominated by near peralkaline–peralkaline A-types and high-temperature transitional I-A compositions, but locally include rarer mildly alkaline (based on HFSE) rocks. The inclusion of whole rock units, which may only incorporate a small volume of alkaline rocks, necessarily means that the volume of these alkaline rocks is both poorly constrained and over-represented with this dataset.</div><div><br></div>