Hydrogeology
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.
-
The Great Artesian Basin Research Priorities Workshop, organised by Geoscience Australia (GA), was held in Canberra on 27 and 28 April 2016. Workshop attendees represented a spectrum of stakeholders including government, policy, management, scientific and technical representatives interested in GAB-related water management. This workshop was aimed at identifying and documenting key science issues and strategies to fill hydrogeological knowledge gaps that will assist federal and state/territory governments in addressing groundwater management issues within the GAB, such as influencing the development of the next Strategic Management Plan for the GAB. This report summarises the findings out of the workshop.
-
Workshop Proceedings of the National Coastal Groundwater Management Knowledge Transfer Workshop held in Canberra on 28-29 May 2013
-
Islands in the Pacific region rely heavily on their fresh groundwater, and for a number of islands it is the only reliable source of freshwater throughout the year. Stresses on groundwater resources in many Pacific Island countries are set to escalate in the future with projected population and economic growth. In addition, there are likely to be future climate impacts on groundwater availability and quality. Although a number of studies have been undertaken at a local scale, very limited information is available to consider the impacts of future climates on groundwater systems at a regional scale. This project provides a first-pass regional-scale assessment of the relative potential vulnerability of groundwater to: (i) low rainfall periods and (ii) mean sea-level rise for 15 Pacific Island countries and territories. The dataset associated with this report can be obtained from www.ga.gov.au using title "Pacific Island Groundwater Vulnerability to Future Climates Dataset" or catalogue number 81575.
-
Recent national and state assessments have concluded that sedimentary formations that underlie or are within the Great Artesian Basin (GAB) may be suitable for the storage of greenhouse gases. These same formations contain methane and naturally generated carbon dioxide that has been trapped for millions of years. The Queensland government has released exploration permits for Greenhouse Gas Storage in the Bowen and Surat basins. An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact CO2 migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of CO2 migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of CO2, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are no hydrochemical studies of such deeper aquifers in the prospective storage areas. Geoscience Australia (GA) and the Geological Survey of Queensland (GSQ), Queensland Department of Mines and Energy, worked collaboratively under the National Geoscience Agreement (NGA) to characterise the regional hydrochemistry of the Denison Trough and Surat Basin and trialled different groundwater monitoring strategies. The output from this Project constitutes part of a regional baseline reference set for future site-specific and semi-regional monitoring and verification programmes conducted by geological storage proponents. The dataset provides a reference of hydrochemistry for future competing resource users.
-
Poster prepared for International Association of Hydrogeologists Congress 2013 In this study, AEM mapping validated by drilling has enabled the lateral extents and thickness of the Pliocene aquifers to be identified. The Pliocene in this area dominantly comprises the fluvial Calivil Formation, with the shallow marine Loxton-Parilla Sands restricted to the southernmost part of the area. Post-depositional warping, tilting and discrete offsets associated with neotoectonics are also recognised. Facies analysis indicates the Calivil was deposited in deep braided streams across a dissected sedimentary landscape. Overall, the sequence is fining-upwards, with evidence for progradation over the Loxton-Parilla. Channel fill materials comprise gravels and sands, and local fine-grained units represent abandoned channels and local floodplain sediments. Integration of textural and hydraulic testing data has revealed there are five hydraulic classes within the Calivil,. At a local scale (10s to 100s of metres), there is considerable lithological heterogeneity, however at a regional scale (kms), sands and gravels are widely distributed with particularly good aquifers developed in palaeochannels and at the confluence of palaeo-river systems. Aquifer testing has revealed Calivil to be an excellent aquifer, with high storage capacity, and locally very high transmissivities (up to 50 l/s). Integration of the AEM data with borehole geophysical data (gamma, induction and NMR) and textural and pore fluid data has enabled maps of aquifer properties including groundwater salinity, porosity, storage and hydraulic conductivity to be derived. Overall, the multi-disciplinary approach adopted has enabled rapid delineation of new groundwater resources, and facilitated assessment of the Pliocene aquifers for managed aquifer recharge.
-
These grids represent the potentiometric surface of the Cadna-owie - Hooray Aquifer in the Great Artesian Basin at 20 year intervals from 1900-2010. They were interpolated from GAB water table elevations and from observations of hydraulic head obtained from state groundwater databases. Head measurements were density corrected prior to creation of surfaces. Where there were no temperatures supplied with the head measurement to allow correction, temperature was interpolated from dataset 'Great Artesian Basin groundwater temperature' (Geoscience Australia dataset, Catalogue No. 76929, available from http://www.ga.gov.au).The grid surfaces 1900-1920, ?, 2000-2010 account for the possible effects of geological faults on groundwater flow in the GAB. Grids 1900-1920_nf and 2000-2010_nf are without the influence of regional tectonic faulting. Null values assigned as 1.000000e+30. Grid cell size (X, Y) = 5000 m, 5000 m. This GIS data set and metadata was produced by CSIRO for the Great Artesian Basin Water Resource Assessment and used in figures 7.2, 7.3 and 7.4 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. Projection is Albers equal area conic, with central meridian 143 degrees longitude, standard parallels at -21 and -29 degrees latitude and latitude of projection's origin at -25. For more information, contact: hris Turnadge Research Projects Officer CSIRO Land and Water Waite Road Urrbrae SA 5064
-
Poster prepared for International Association of Hydrogeologists Congress 2013 In this study, a multi-disciplinary systems mapping approach has completely revised our understanding of the age, stratigraphy, mode of deposition and landscape evolution of Lower Darling Valley (LDV) sediments within the north-western Murray Basin. The Cenozoic sequence in this area contains Paleogene and Neogene shallow marine, fluvial and shoreline sediments overlain by Quaternary lacustrine, aeolian and fluvial units. The surficial Quaternary fluvial units of the valley form a complex group of morphostratigraphic units which vary in their distribution, character and geomorphic expression through the study area. Resolving the distribution of these units has been particularly important for understanding surface-groundwater interactions. In the LDV Quaternary fluvial sequence, multiple scroll-plain tracts are incised into higher, older more featureless floodplains. Prior to this study, these were respectively correlated to the Coonambidgal and Shepparton Formations of the Riverine Plain in the eastern Murray Basin and associated with the subsequently discarded Prior Stream/Ancestral River chronosequence of different climatically controlled depositional styles. In contrast to that proposition, we ascribe all LDV Quaternary fluvial deposition to lateral-migration depositional phases of one style, though with more variable stream discharges and channel and meander-scroll dimensions. Successively higher overbank-mud deposition through time obscures scroll traces and provides the main ongoing morphologic difference. A new morphostratigraphic unit, the Menindee Formation, refers to the mostly older and higher floodplain sediments, where scroll traces are obscured by overbank mud which continues to be deposited by the highest modern floods. Younger inset scroll-plain tracts, with visible scroll-plain traces, are still referred to the Coonambidgal Formation. Another new stratigraphic unit, the Willotia beds, refers to even older fluvial sediments, now above modern floodplain levels and mostly covered by aeolian sediments. This work provides important insights into the nature of Australian Quaternary fluvial deposition, with important implications for hydrogeological processes, groundwater resources and the assessment of managed aquifer recharge options.
-
Poster prepared for International Association of Hydrogeologists Congress 2013 Surface-groundwater interactions are often poorly understood. This is particularly true of many floodplain landscapes in Australia, where there is limited mapping of recharge and discharge zones along the major river systems, and only generalised quantification of hydrological fluxes based on widely spaced surface gauging stations. This is compounded by a lack of temporal data, with poor understanding of how surface-groundwater interactions change under different rainfall, river flow and flood regimes. In this study, high resolution LiDAR, in-river sonar, and airborne electromagnetic (AEM) datasets (validated by drilling) have been integrated to produce detailed 3-dimensional mapping that combines surface geomorphology and hydrogeology. This mapping enables potential recharge zones in the river and adjacent landscape to be identified and assessed under different flow regimes. These potential recharge zones and groundwater flow pathways were then compared against the spatial distribution of discontinuities in near-surface and deeper aquitard layers derived from the AEM interpretation. These 3D mapping constructs provide a framework for considering groundwater processes. Hydrochemistry data, allied with hydraulic data from a bore monitoring network, demonstrate the importance of recharge during significant flood events. In many places, the AEM data also affirm the spatial association between fresher groundwater resources and sites of river and floodplain leakage. At a more localised scale, hydrogeochemical data allows discrimination of lateral and vertical fluxes. Overall, this integrated approach provides an important conceptual framework to constrain hydrogeological modelling, and assessments of sustainable yield. The constructs are also invaluable in targeting and assessing managed aquifer recharge (MAR) options.
-
Geoscience Australia was recently involved in the reconceptualisation of the hydrogeology of the Great Artesian Basin (GAB), as part of the Great Artesian Basin Water Resource Assessment. The project refined the understanding of key hydrostratigraphic units within the GAB. This brochure describes key aquifers in the GAB and is designed to be distributed with samples from the aquifers. Aquifers covered are the Winton-Mackunda, Cadna-owie-Hooray, Adori Sandstone/Springbok Sandstone, Hutton Sandstone and Precipice Sandstone. Brochure prepared for the International Association of Hydrogeologists Congress 2013, Perth, Australia