From 1 - 10 / 51
  • This report is a partial update of the national assessment series of Australia's energy resources, which was first released in 2010. This interim release provides an overview of Australia's identified and potential fossil energy resources: oil, gas, coal, uranium and thorium. It focuses on resource quantities. A full updated version of AERA will be released in December 2016. It will add hydro, solar, wind, geothermal, bioenergy and ocean energy in conjunction with the Australian Renewable Energy Agency, along with energy resource market information from the Office of Chief Economist. AERA provides the crucial information and data for comparing energy commodities and reviewing resources available in Australia and the world. In turn, this information can be used while considering resources and energy policies.

  • A large proportion of Australia’s onshore sedimentary basins remain exploration frontiers. Industry interest in these basins has recently increased due to the global and domestic energy demand, and the growth in unconventional hydrocarbon exploration. In 2016, Geoscience Australia released an assessment of eight central Australian basins that summarised the current status of geoscientific knowledge and petroleum exploration, and the key questions, for each basin. This publication provides a comprehensive assessment of the geology, petroleum systems, exploration status and data coverage for additional three basins in western and central Australia: the Canning, Perth and Officer basins. The Perth and Canning basins are producing petroleum basins, however, they may be regarded as frontier basins for unconventional hydrocarbon resources. The Officer Basin is a large, unproven frontier basin which has seen little exploration to date.

  • Exploring for the Future (EFTF) is a $225 million initiative by the Australian Government conducted in partnership with state and Northern Territory government agencies and universities that aims to boost northern Australia's attractiveness as a destination for investment in resource exploration. A complementary initiative, the Exploration Incentive Scheme (EIS) is a Western Australian State-Government initiative that aims to encourage exploration in Western Australia for the long-term sustainability of the State’s resources sector. The Kidson Sub-basin seismic survey (18GA-KB1 or L211) was acquired as part of EFTF and the EIS, as a collaboration between Geoscience Australia and the Geological Survey of Western Australia (Resource Strategy Division). The 872 km long seismic line was acquired in an east-southeast to west-northwest orientation, on the road between the Kiwirrkurra community in the east, to approximately 20 km from Marble Bar, near the West Australian coast. The primary aims of the seismic survey were to better understand the subsurface geology, crustal architecture and spatial extents of basin and basement terrains. Crucially, the seismic survey was planned to address a lack of coherent seismic data across the Kidson Sub-basin, onshore Canning Basin and to increase the resource prospectivity of the region. The seismic survey imaged the following subdivisions of the Canning Basin: the Wallal Embayment Barnicarndy Graben, Anketell Shelf, and the Kidson Sub-basin, The survey also imaged several pre-Phanerozoic basement terrains, and several seismically distinct, mid to-lower crustal tectonic provinces. This report comprises a summary of the basement and basin geology, mineral and energy systems of the area, and an interpretation of the newly acquired seismic data.

  • <div>The Australian Government's Data Driven Discoveries program, in collaboration with the Geological Survey of Queensland, has collected 1715 km of deep crustal seismic data across the Adavale Basin in South-Central Queensland. The L215 Adavale Basin Deep Crustal Seismic Survey was conducted between April and July 2023. The survey acquired 7 regional seismic lines, including 23GA-A1 (550 km), 23GA-A2 (196 km), 23GA-A3 (262 km), 23GA-A4 (94 km), 23GA-A5 (239 km), 23GA-A6 (161 km), and 23GA-A7 (213 km) across the basin. The acquisition of these lines occurred both during the day and night near the towns of Adavale, Charleville, Augathella, Blackall, westward towards Windorah, and north beyond Jericho.</div><div><br></div><div>The Adavale Basin Deep Crustal Seismic Survey complements previous work completed under the Data Driven Discoveries Program, including the Adavale Basin 2D Reprocessed Seismic Data Package (eCat No. 149018) and the newly defined chemostratigraphic framework for the basin (Riley et al., 2023, eCat No. 147773). The survey will deliver a significant uplift in regional shallow and deep crustal seismic information for the Adavale Basin, providing a modern, high-fold dataset that will enhance understanding of the basin's stratigraphy, hydrogeology, resource potential, and underground salt storage opportunities.</div><div><br></div><div><strong>The raw shot gather data acquired during the survey are now available from Geoscience Australia. To request this data, please email clientservices@ga.gov.au and include the reference 'eCat#149289' in your message.</strong></div>

  • Increasingly, society understands that decarbonising the global economy will depend on critical minerals and mining. This is leading to greater scrutiny of where the necessary commodities will be coming from, and whether they will be produced responsibly. Australia’s vibrant world-class minerals industry, which has evolved over a long history of mining diverse commodities, is attracting attention in this regard. Given the major roles coal plays in Australia’s minerals industry and national economy, the global transition to low carbon energy will result in major challenges that need to be addressed. The loss of coal can be partly compensated by an increasing focus on the critical materials needed for clean energy technologies such as wind turbines, solar panels, and storage batteries. New mines, mineral processing advances and recycling will be needed to meet rapidly increasing demand for these commodities, and the recovery of critical metals from past, present and future mining wastes is also likely to be important. After outlining critical mineral supply issues, this report provides contextual information on types of mining and how mine wastes and rehabilitation have been, and are being, managed in Australia. After summarising the implications of closing coal mines, it focusses on growing the critical metals sector, with emphasis on the potential recovery of these increasingly valuable metals from mine wastes.

  • Exploring for the Future was a $100.5 million initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. The four-year program (2016-2020) focused on northern Australia and parts of South Australia. The under-explored northern Australian region offers enormous potential for industry development and is advantageously located close to major global markets. Geoscience Australia's leading scientists used and developed new innovative techniques to gather new scientific data and information, on an unprecedented scale, about the potential mineral, energy and groundwater resources concealed beneath the surface. This work was undertaken in greenfield areas, where the Exploring for the Future program had the greatest impact. This dataset depicts the geographical extents of the various projects undertaken as part of this program, with an indicative total spend for each

  • <div>The interpretation of AusAEM airborne electromagnetic (AEM) survey conductivity sections in the Canning Basin region delineates the geo-electrical features that correspond to major chronostratigraphic boundaries, and captures detailed stratigraphic information associated with these boundaries. This interpretation forms part of an assessment of the underground hydrogen storage potential of salt features in the Canning Basin region based on integration and interpretation of AEM and other geological and geophysical datasets. A main aim of this work was to interpret the AEM to develop a regional understanding of the near-surface stratigraphy and structural geology. This regional geological framework was complimented by the identification and assessment of possible near-surface salt-related structures, as underground salt bodies have been identified as potential underground hydrogen storage sites. This study interpreted over 20,000 line kilometres of 20&nbsp;km nominally line-spaced AusAEM conductivity sections, covering an area approximately 450,000 km2 to a depth of approximately 500&nbsp;m in northwest Western Australia. These conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This interpretation produced approximately 110,000 depth estimate points or 4,000 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for Geoscience Australia’s Estimates of Geological and Geophysical Surfaces database, the national repository for formatted depth estimate points. Despite these interpretations being collected to support exploration of salt features for hydrogen storage, they are also intended for use in a wide range of other disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. Therefore, these interpretations will benefit government, industry and academia interested in the geology of the Canning Basin region.</div>

  • <div>A downloadable map showing Australia's Petroleum Titles and 2022 Offshore Petroleum Acreage Release areas</div>

  • This data package provides seismic interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included. The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on the recently published interpretations by Szczepaniak et al. (2023) by providing updated interpretations in the AFER Project area for the Top Cadna-owie (CC10) and Top Pre-Permian (ZU) horizons, as well as interpretations for 13 other horizons that define the tops of play intervals being assessed for their energy resource potential (Figure 1). Seismic interpretations for the AFER Project are constrained by play interval tops picked on well logs that have been tied to the seismic profiles using time-depth data from well completion reports. The Pedirka and Western Eromanga basins are underexplored and contain relatively sparse seismic and petroleum well data. The AFER Project has interpreted play interval tops in 41 wells, 12 seismic horizons (Top Cadna-owie and underlying horizons) on 238 seismic lines (9,340 line kilometres), and all 15 horizons on 77 recently reprocessed seismic lines (3,370 line kilometres; Figure 2). Note that it has only been possible to interpret the Top Mackunda-Winton, Top Toolebuc-Allaru and Top Wallumbilla horizons on the reprocessed seismic lines as these are the only data that provide sufficient resolution in the shallow stratigraphic section to confidently interpret seismic horizons above the Top Cadna-owie seismic marker. The seismic interpretations are provided as point data files for 15 horizons, and have been used to constrain the zero edges for gross-depositional environment maps in Bradshaw et al. (2023) and to produce depth-structure and isochore maps for each of the 14 play intervals in Iwanec et al. (2023). The data package includes the following datasets: 1) Seismic interpretation point file data in two-way-time for up to 15 horizons using newly reprocessed seismic data and a selection of publicly available seismic lines (Appendix A). 2) Geographical layers for the seismic lines used to interpret the top Cadna-owie and underlying horizons (Cadnaowie_to_TopPrePermian_Interpretation.shp), and the set of reprocessed lines used to interpret all 15 seismic horizons (All_Horizons_Interpretation.shp; Appendix B). These seismic interpretations are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and Western Eromanga basins.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. The name ‘Birrindudu Basin’ was first introduced by Blake et al. (1975) and Sweet (1977) for a succession of clastic sedimentary rocks and carbonates, originally considered to be Paleoproterozoic to Neoproterozoic in age, and overlain by the Neoproterozoic Victoria Basin (Dunster et al., 2000), formerly known as the Victoria River Basin (see Sweet, 1977).