From 1 - 10 / 12
  • Winds, waves and tides associated with storms are capable of causing severe damage to coastal property and infrastructure. Locations that are prone to erosion and inundation first require an accurate assessment of risk before deciding the most cost effective mitigation option. This research aims to produce probabilistic assessments of the coastal erosion and inundation risks associated with storms, particularly for coincident or clustered events, thereby helping to strengthen the resilience of coastal communities. Coastal erosion and inundation hazard is modelled in this study by simulations of realistic storm condition forcing (waves and tides) through a morphodynamic model to calculate return periods for maximum extent of shoreline retreat. This approach of characterizing erosion response return periods is superior to the assumption that the most energetic storm causes maximum erosion. This methodology is demonstrated for beaches in metropolitan Adelaide and at Old Bar, NSW. These sites were selected to test the methodology for a span of geographic conditions in terms of storm climate and deep-water wave exposure, working towards developing this method into a transportable framework applicable to other coastal areas. Desktop and field assessments of each site were conducted to document geomorphic and sediment characteristics to inform shoreline modelling. Having established the historical framework at each location, multivariate statistical analysis of wave (buoy or hindcast models) and tides for peak storm events has allowed for the synthesis of realistic future conditions. This complex sequencing of cycling between accretion and erosion incorporating cross-shore and alongshore sediment transport has been estimated using a probabilistic shoreline translation model. Here, model outputs coupled with a scaled exposure analysis, will describe the damage to coastal infrastructure for the two case study sites. This information can then be used to inform coastal management strategies. Presented at the Australasia's emergency management and public safety conference AFAC17

  • All modern ground motion prediction equations (GMPEs) are now calibrated to the moment magnitude scale MW, it is therefore essential that earthquake rates are also expressed in terms of moment magnitudes for probabilistic seismic hazard analyses. However, MW is not routinely estimated for earthquakes in Australia because of Australia’s low-to-moderate level of seismicity, coupled with the relatively sparse seismic recording networks. As a result, the Australian seismic catalogue has magnitude measures mainly based on local magnitudes, ML. To homogenise the earthquake catalogue based on a uniform MW, a “reference catalogue” that includes earthquakes with available MW estimates was compiled. This catalogue consists of 240 earthquakes with original MW values between 2.0 and 6.58. The reference catalogue served as the basis for the development of magnitude conversion equations between MW and ML. The conversions are developed using general orthogonal regression. Different functional forms for the conversion equations were considered and their impact on seismic hazard is explored. Synthetic earthquake catalogues with a “known” ­b-value are generated about an arbitrary location. These catalogues are subsequently perturbed according to different magnitude adjustment assumptions. It is found that the results of seismic hazard analyses at our site are sensitive to the implementation algorithm of such equations. For the considered scenario, the results show a 20-40% reduction in PGA hazard (at the 10% in 50-year probability of exceedance level), depending on the selection of the functional form as well as the method for applying the magnitude conversion equations. Presented at the 2018 Seismological Society of America (SSA) Annual Meeting

  • Tsunamis are unpredictable and infrequent but potentially large impact natural disasters. To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk analysis methods have been developed and have proved useful. However, large gaps and uncertainties still exist and many steps in the assessment methods lack information, theoretical foundation, or commonly accepted methods. Moreover, applied methods have very different levels of maturity, from already advanced probabilistic tsunami hazard analysis for earthquake sources, to less mature probabilistic risk analysis. In this review we give an overview of the current state of probabilistic tsunami hazard and risk analysis. Identifying research gaps, we offer suggestions for future research directions. An extensive literature list allows for branching into diverse aspects of this scientific approach. Appeared online in Front. Earth Sci., 29 April 2021

  • The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning. Appeared online in Front. Earth Sci., 05 March 2021.

  • This paper presents a methodology for post-earthquake probabilistic risk (of damage) assessment that we propose in order to develop a computational tool for automatic or semi-automatic assessment. The methodology utilizes the same so-called risk integral which can be used for pre-earthquake probabilistic assessment. The risk integral couples (i) ground motion hazard information for the location of a structure of interest with (ii) knowledge of the fragility of the structure with respect to potential ground motion intensities. In the proposed post-mainshock methodology, the ground motion hazard component of the risk integral is adapted to account for aftershocks which are deliberately excluded from typical pre-earthquake hazard assessments and which decrease in frequency with the time elapsed since the mainshock. Correspondingly, the structural fragility component is adapted to account for any damage caused by the mainshock, as well as any uncertainty in the extent of this damage. The result of the adapted risk integral is a fully-probabilistic quantification of post-mainshock seismic risk that can inform emergency response mobilization, inspection prioritization, and reoccupancy decisions.

  • Historical reports of earthquake effects from the period 1681 to 1877 in Java, Bali and Nusa Tenggara are used to independently test ground motion predictions in Indonesia’s 2010 national probabilistic seismic hazard assessment (PSHA). Assuming that strong ground motion occurrence follows a Poisson distribution, we cannot reject Indonesia’s current PSHA for key cities in Java at 95% confidence. However, the results do suggest that seismic hazard may be underestimated for the megacity Jakarta. Ground motion simulations for individual large damaging events are used to identify plausible source mechanisms, providing insights into the major sources of earthquake hazard in the region and possible maximum magnitudes for these sources. The results demonstrate that large intraslab earthquakes have been responsible for major earthquake disasters in Java, including a ~Mw 7.5 intraslab earthquake near Jakarta in 1699 and a ~Mw 7.8 event in 1867 in Central Java. The results also highlight the potential for large earthquakes to occur on the Flores Thrust. We require an earthquake with Mw 8.4 on the Flores Thrust to reproduce tsunami observation from Sulawesi and Sumbawa in 1820. Furthermore, large shallow earthquakes (Mw > 6) have occurred in regions where active faults have not been mapped identifying the need for further research to identify and characterize these faults for future seismic hazard assessments. <b>Citation:</b> Jonathan Griffin, Ngoc Nguyen, Phil Cummins, Athanasius Cipta; Historical Earthquakes of the Eastern Sunda Arc: Source Mechanisms and Intensity‐Based Testing of Indonesia’s National Seismic Hazard Assessment. <i>Bulletin of the Seismological Society of America </i>2018; 109 (1): 43–65. doi: https://doi.org/10.1785/0120180085

  • Since the publication of the Global Seismic Hazard Assessment Project (GSHAP) hazard map in 1999, Australia has stood out as a region of high earthquake hazard among its stable continental region (SCR) peers. The hazard map underpinning the GSHAP traces its lineage back to the 1990 assessment of Gaull and others. This map was modified through a process of expert judgement in response to significant Australian earthquakes (notably the MW 6.2, 6.3 and 6.6 1988 Tennant Creek sequence and the deadly 1989 MW 5.4 Newcastle earthquake). The modified map, developed in 1991 (McCue and others, 1993), underpins Standards Australia’s structural design actions to this day (AS1170.4–2007). But does this assessment make sense with our current understanding of earthquake processes in SCRs? Geoscience Australia (GA) have embarked to update the seismic hazard model for Australia through the National Seismic Hazard Assessment (NSHA18) project. Members of the Australian seismological community were solicited to contribute alternative seismic source models for consideration as inputs to the updated Australian NSHA18. This process not only allowed for the consideration of epistemic uncertainty in the hazard model in a more comprehensive and transparent manner, but also provides the community as a whole ownership of the final model. The 3rd party source models were assessed through an expert elicitation process that weighed the opinion of each expert based on their knowledge and ability to judge relevant uncertainties. In total, 19 independent seismic source models (including regional and background area sources, smoothed seismicity and seismotectonic sources) were considered in the complete source model. To ensure a scientifically rigorous, transparent and quality product, GA also established a Scientific Advisory Panel to provide valuable and ongoing feedback during the development of the NSHA18. The NSHA18 update yields many important advances on its predecessors, including: calculation in a full probabilistic framework using the OpenQuake-engine; consistent expression of earthquake magnitudes in terms of MW; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model based on the Australian Neotectonic Features database; inclusion of epistemic uncertainty on fault occurrence models and earthquake clustering; and the use of modern ground-motion models. The preliminary NSHA18 design values are significantly lower than those in the current (1991-era) AS1170.4–2007 map at the 10% in 50-year probability level. However, draft values at lower probabilities (i.e., 2% in 50-years) are entirely consistent (in terms of the percentage land mass exceeding different PGA thresholds) with other SCRs with low strain rates (e.g. the central & eastern United States). The large reduction in seismic hazard at the 10% in 50-year probability level has led to much consternation amongst the building code committee in terms of whether the new draft design values will allow enough resilience to seismic loads. This process underscores the challenges in developing national-scale PSHAs in slowly deforming regions, where 10% in 50-year probability level may not adequately capture the maximum considered earthquake ground motions. Consequently, a robust discussion is required is amongst the Australian building code committee (including hazard practitioners) to determine alternative hazard and/or risk objectives that could be considered for future standards. Presented at the Probabilistic Seismic Hazard Assessment (PSHA) Workshop 2017, Lenzburg, Switzerland

  • Canada's 6th Generation seismic hazard model has been developed to generate seismic design values for the 2020 National Building Code of Canada (NBCC2020). The model retains most of the seismic source model from the 5th Generation, but updates the earthquake sources for the deep inslab earthquakes under the Straits of Georgia and adds the Leech River - Devil’s Mountain fault near Victoria. The rates of magnitude ~9 Cascadia earthquakes are also increased to match new paleoseismic information. Two major changes in the ground motion model (GMM) are A) replacement of most of the three-branch representative suite used in 2015 by suites of weighted GMMs, and B) use and adaptation of various GMMs to directly calculate hazard on various site classes with representative Vs30 values, rather than providing hazard values on a reference Class C site and applying F(T) factors as in 2015. Computations are now also being performed with the OpenQuake engine, which has been validated through the replication of the 5th Generation results. Seismic design values (on various Soil Classes) for PGA, and for Sa(T) for T = 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 s are proposed for NBCC2020 mean ground shaking at the 2% in 50-year probability level. The paper discusses chiefly the change in Site Class C values relative to 2015 in terms of the changes in the seismic source model and the GMMs, but the changes in hazard at other site classes that arise from application of the direct-calculation approach are also illustrated.

  • Geoscience Australia (GA) has embarked on a project to update the seismic hazard model for Australia through the National Seismic Hazard Assessment (NSHA18) project. The draft NSHA18 update yields many important advances on its predecessors, including: 1) calculation in a full probabilistic framework using the Global Earthquake Model’s OpenQuake-engine; 2) consistent expression of earthquake magni-tudes in terms of moment magnitude, MW; 3) inclusion of epistemic uncertainty through the use of alterna-tive source models; 4) inclusion of a national fault-source model based on the Australian Neotectonic Features database; 5) the use of modern ground-motion models; and 6) inclusion of epistemic uncertainty on seismic source models, ground-motion models and fault occurrence and earthquake clustering models. The draft NSHA18 seismic design ground motions are significantly lower than those in the current (1991-era) AS1170.4–2007 hazard map at the 1/500-year annual ground-motion exceedance probability (AEP) level. However, draft values at lower probabilities (i.e., 1/2475-year AEP) are entirely consistent, in terms of the percentage area of land mass exceeding different ground-motion thresholds, with other Stable Continental Regions (e.g., central & eastern United States). The large reduction in seismic hazard at the 1/500-year AEP level has led to engineering design professionals questioning whether the new draft design values will provide enough structural resilience to potential seismic loads from rare large earthquakes. This process underscores the challenges in developing national-scale probabilistic seismic hazard analyses (PSHAs) in slowly-deforming regions, where a 1/500-year AEP design level is likely to be much lower than the ANCOLD Maximum Credible Earthquake (MCE) ground motions. Consequently, a robust discussion among the Standards Australia code committee, hazard practitioners and end users is required to consider alternative hazard and/or risk objectives for future standards. Site-specific PSHAs undertaken for owners and operators of extreme and high consequence dams generally require hazard evaluations at lower probabilities than for typical structural design as recommended in AS1170.4. However, modern national assessments, such as the NSHA18, can provide a benchmark in terms of recommended seismicity models, fault-source models, ground-motion models, as well as hazard values, for low-probability site-specific analyses. With a new understanding of earthquake processes in Australia leading to lower ground-motion hazard values for higher probability events (e.g., 1/500-year AEP), we should also ask whether the currently recommended design probabilities provide an acceptable level of seismic resilience to critical facilities (such as dams) and regular structures. Abstract presented at the 2017 Australian National Committee on Large Dams (ANCOLD) Conference

  • Salinity of groundwater directly affects its suitability for different uses, including human consumption, stock water, agricultural use, and mineral or energy extraction. Traditionally, direct measurements of groundwater salinity at monitoring bores that intersect an aquifer have been used to map the spatial distribution of groundwater salinity. However, drilling is a logistically and economically challenging task, and we are usually left with a sparse set of measurements from which to infer groundwater salinity over large spatial extents. Airborne electromagnetic (AEM) sounding provides a solution to this problem. This is because AEM can be flown rapidly and cost-effectively over large swathes of land, and high subsurface bulk conductivities inferred from the AEM are well correlated with groundwater salinity in porous aquifers. We present here a methodology and case study from the Keep River Plains in the Northern Territory that provides information for land and watershed managers about the confidence with which salinity can be mapped over large areas using AEM. Extensive pore fluid sampling of the saturated zone, which lies beneath the watertable, enables this workflow to be used effectively. The results provided by our method can feed into decision making while accounting for uncertainty, enabling remote communities to manage their land and water resources effectively. <b>Citation:</b> Symington, N.,Ray, A., Harris-Pascal, C., Tan, K.P., Ley-Cooper, A.Y., and Brodie, R.C., 2020. Groundwater salinity estimation using borehole and AEM data: a framework for uncertainty analysis. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.