From 1 - 2 / 2
  • The Hera Au–Pb–Zn–Ag deposit in the southeastern Cobar Basin of central New South Wales preserves calc-silicate veins/skarn and remnant carbonate/sandstone-hosted skarn within a reduced anchizonal Siluro-Devonian turbidite sequence. The skarn orebody distribution is controlled by a long-lived, basin margin fault system, that has intersected a sedimentary horizon dominated by siliciclastic turbidite, with lesser gritstone and thick sandstone intervals, and rare carbonate-bearing stratigraphy. Foliation (S1) envelopes the orebody and is crosscut by a series of late-stage east–west and north–south trending faults. Skarn at Hera displays mineralogical zonation along strike, from southern spessartine–grossular–biotite–actinolite-rich associations, to central diopside-rich–zoisite–actinolite/tremolite–grossular-bearing associations, through to the northern most tremolite–anorthite-rich (garnet-absent) association in remnant carbonate-rich lithologies and sandstone horizons; the northern lodes also display zonation down dip to garnet present associations at depth. High-T skarn assemblages are pervasively retrogressed to actinolite/tremolite–biotite-rich skarn and this retrograde phase is associated with the main pulse of sulfide mineralisation. The dominant sulfides are high-Fe-Mn sphalerite–galena–non-magnetic high-Fe pyrrhotite–chalcopyrite; pyrite, arsenopyrite and scheelite are locally abundant. The distribution of metals in part mimics the changing gangue mineralogy, with Au concentrated in the southern and lower northern lode systems and broadly inverse concentrations for Ag–Pb–Zn. Stable isotope data (O–H–S) from skarn amphiboles and associated sulfides are consistent with magmatic/basinal water and magmatic sulfur inputs, while hydrosilicates and sulfides from the wall rocks display elevated δD and mixed δ34S consistent with progressive mixing or dilution of original basinal/magmatic waters within the Hera deposit by unexchanged waters typical of low latitude (tropical) meteoritic waters. High precision titanite (U–Pb) and biotite (Ar–Ar) geochronology reveals a manifold orebody commencing with high-T skarn and retrograde Pb–Zn-rich skarn formation at ≥403 Ma, Au–low-Fe sphalerite mineralisation at 403.4 ± 1.1 Ma, foliation development remobilisation or new mineralisation at 390 ± 0.2 Ma followed by thrusting, orebody dismemberment at (384.8 ± 1.1 Ma) and remobilization or new mineralisation at 381.0 ± 2.2 Ma. The polymetallic nature of the Hera orebody is a result of multiple mineralizing events during extension and compression and involving both magmatic and likely basinal fluid/metal sources. <b>Citation:</b> Fitzherbert, Joel A., McKinnon, Adam R., Blevin, Phillip L., Waltenberg, Kathryn., Downes, Peter M., Wall, Corey., Matchan, Erin., Huang Huiqin., The Hera orebody: A complex distal (Au–Zn–Pb–Ag–Cu) skarn in the Cobar Basin of central New South Wales, Australia <i>Resource Geology,</i> Vol 71, Iss 4, pp296-319 <b>2021</b>. DOI: https://doi.org/10.1111/rge.12262

  • Hydrothermal magnetite from the Starra iron oxide‑copper gold (IOCG) deposit in northwest Queensland, Australia, records a gradual decrease in V, Ni, Cr, and Mn that correlates with the transition from early, amphibole-biotite-magnetite dominant alteration to late, chlorite-quartz-hematite-dominated alteration assemblages. The observed systematic change in multivariate elements in magnetite is interpreted to indicate an increase in fO2 during the main Cu(Au) mineralization. We suggest that variations in the V, Ni, and Cr contents of magnetite at Starra indicate either a primary magmatic fluid source or the leaching of mafic rocks by fluids during early albitization. Late silician magnetite contained in ankerite veins that crosscut the pre-existing alteration assemblages in the hanging wall to the Starra 222 ore body is likely the result of a second mineralization phase, which contributed additional metals to the Starra ore bodies. Existing data on magnetite chemistry from several IOA, IOCG, Fe, and Fe-W skarn deposits show that the ratio of V to Ga discriminates the various ore types effectively. Skarn deposits are separated from IOA and IOCG by lower concentrations of V, Ni, and Cr, suggesting a more primitive fluid source or the precipitation of magnetite at distinct physicochemical conditions than IOA and IOCG deposits. Magnetite from IOA deposits exhibits a consistently elevated V concentration whereas magnetite from Fe(–– W) skarn records an increase in V concentration with the evolution of the system. A pronounced decrease in the V contents of magnetite associated with Cu Au mineralization at Starra is interpreted as a change in redox conditions from reduced to oxidized at the time of mineralization. Such variations are also observed in other IOCG deposits. We propose that systematic decreases in V concentration in magnetite during the paragenetic evolution of the host mineral system is a diagnostic indicator for Cu(Au) mineralization in IOCG deposits, and as such, it may be used as a proxy for Cu-Au exploration, if the paragenetic context of magnetite is well constrained. <b>Citation:</b> Max Hohl, Jeffrey A. Steadman, Jonathan Cloutier, Shaun L.L. Barker, Ivan Belousov, Karsten Goemann, David R. Cooke, Trace element systematics of magnetite from the Starra iron oxide‑copper gold deposits reveals early fluid conditions characteristic for Cu mineralization, <i>Chemical Geology</i>, Volume 648, 2024, 121960, ISSN 0009-2541, https://doi.org/10.1016/j.chemgeo.2024.121960