groundwater-dependent ecosystems
Type of resources
Keywords
Publication year
Service types
Topics
-
The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features greater than 25m by 25m are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery. Areas depicted in the dataset have been exaggerated to enable visibility.
-
The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features greater than 25m by 25m are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery. Areas depicted in the dataset have been exaggerated to enable visibility.
-
Groundwater-dependent ecosystems (GDEs) rely on access to groundwater on a permanent or intermittent basis for some or all of their water requirements (Queensland Government, 2018). Remotely sensed data from Digital Earth Australia (DEA) (Geoscience Australia, 2018) were used to map potential aquatic and other GDEs and enhance understanding of surface water – groundwater interactions in the Upper Burdekin region. Two Landsat TM satellite products (Water Observations from Space (WOfS; Mueller et al. 2016) summary statistic and Tasselled Cap Index (TCI) wetness summary)) were used to investigate the persistence of surface water and soil moisture in the landscape to identify perennial streams, springs and other parts of the landscape that may rely on groundwater discharge. The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features at least 25 m wide are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery, such as the identification of standing water for at least 80% of the time. The TCI is a method of reducing six surface reflectance bands of satellite data to three bands (Brightness, Greenness, Wetness) using a Principal Components Analysis (PCA) and Procrustes' Rotation (Roberts et al., 2018). The published coefficients of Crist (1985) are applied to DEA's Landsat data to generate a TCI composite. The resulting Tasselled Cap bands are a linear combination of the original surface reflectance bands that correlate with the Brightness (bare earth), Greenness and Wetness of the landscape. The TCI wetness summary (or Tasselled Cap Wetness (TCW) percentage exceedance composite), derived from the Wetness band, represents the behaviour of water in the landscape, as defined by the presence of water, moist soil or wet vegetation at each pixel through time. The summary shows the percentage of observed scenes where the Wetness layer of the Tasselled Cap transform is above the threshold, i.e. where each pixel has been observed as ‘wet’ according to the TCI. Areas that retain surface water or wetness in the landscape during the dry season are potential areas of groundwater discharge and associated GDEs. The TCW threshold is set at -600 to calculate the percentage exceedance. This threshold is based on scientific judgment and is currently in the research/testing phase. It is based on Australian conditions and conservative in nature. The dry season, when surface runoff to streams and rainfall are minimal, is particularly useful for identifying and mapping groundwater-fed streams, springs and other ecosystems that rely on access to groundwater during periods of limited rainfall. The Upper Burdekin region was especially dry between May and October 2013, with low rainfall totals in the months preceding this dry season and overall below-average rainfall conditions (i.e. decline in rainfall residual mass). The TCW exceedance composite was classified into percentage intervals to distinguish areas that were wet for different proportions of time during the 2013 dry season. Field validation of the remote sensing data products would be required to confirm the preliminary identification of parts of the landscape where groundwater discharges to the surface and potentially supports GDEs. This release includes the classified WOfS summary statistic and classified TCW percentage exceedance composite (May-October 2013) data products for the McBride and Nulla basalt provinces in the Upper Burdekin region, North Queensland. <b>References: </b> Crist EP (1985) A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sensing of Environment 17(3), 301–306. Doi: 10.1016/0034-4257(85)90102-6. Geoscience Australia (2018) Digital Earth Australia. Geoscience Australia, http://www.ga.gov.au/dea. Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S. and Ip, A. (2016) Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment 174, 341-352, ISSN 0034-4257. Queensland Government (2018) Groundwater dependent ecosystems, WetlandInfo 2014. Queensland Government, Brisbane, https://wetlandinfo.des.qld.gov.au/wetlands/ecology/aquatic-ecosystems-natural/groundwater-dependent/. Roberts D, Dunn B and Mueller N (2018) Open Data Cube Products Using High-Dimensional Statistics of Time Series. International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE Geoscience and Remote Sensing Society.
-
<div>This report brings together data and information relevant to understanding the regional geology, hydrogeology, and groundwater systems of the South Nicholson – Georgina (SNG) region in the Northern Territory and Queensland. This integrated, basin-scale hydrogeological assessment is part of Geoscience Australia’s National Groundwater Systems project in the Exploring for the Future program. While the northern Georgina Basin has been at the centre of recent investigations as part of studies into the underlying Beetaloo Sub-basin, no regional groundwater assessments have focused on central and southern parts of the Georgina Basin since the 1970s. Similarly, there has been no regional-scale hydrogeological investigation of the deeper South Nicholson Basin, although the paucity of groundwater data limited detailed assessment of the hydrogeology of this basin. This comprehensive desktop study has integrated numerous geoscience and hydrogeological datasets to develop a new whole-of-basin conceptualisation of groundwater flow systems and recharge and discharge processes within the regional unconfined aquifers of the Georgina Basin.</div><div><br></div><div>Key outputs arising from this study include: (1) the development of a hydrostratigraphic framework for the region, incorporating improved aquifer attribution for over 5,000 bores; and (2) publicly available basin-scale groundwater GIS data layers and maps, including a regional watertable map for the whole Georgina Basin. This regional assessment provides new insights into the hydrogeological characteristics and groundwater flow dynamics within the Georgina Basin, which can aid in the sustainable management of groundwater for current and future users reliant on this critical water resource.</div><div><br></div><div><br></div>
-
<div>The Kati Thanda – Lake Eyre Basin (KT–LEB) covers about 1.2 million square kilometres of outback Australia. Although the basin is sparsely populated and relatively undeveloped it hosts nationally significant environmental and cultural heritage, including unique desert rivers, sweeping arid landscapes, and clusters of major artesian springs. The basin experiences climatic extremes that intermittently cycle between prolonged droughts and massive inland floods, with groundwater resources playing a critical role in supporting the many communities, industries, ecological systems, and thriving First Nations culture of the KT–LEB.</div><div><br></div><div>As part of Geoscience Australia’s National Groundwater Systems Project (in the Exploring for the Future Program) this report brings together contemporary data and information relevant to understanding the regional geology, hydrogeology and groundwater systems of Cenozoic rocks and sediments of the KT–LEB. This work represents the first whole-of-basin assessment into these vitally important shallow groundwater resources, which have previously received far less scientific attention than the deeper groundwater systems of the underlying Eromanga Basin (part of the Great Artesian Basin). The new knowledge and insights about the geology and hydrogeology of the basin generated by this study will benefit the many users of groundwater within the region and will help to improve sustainable management and use of groundwater resources across the KT–LEB.</div><div><br></div>
-
This report was compiled and written to summarise the four-year (2008 to 2012) 'Sustainable management of coastal groundwater resources' project. This project was funded by the National Water Commission's (NWC) Raising National Water Standards Program. Geoscience Australia was a key project partner, and worked closely with collaborators from Ecoseal, Arche Consulting, GHD, Kempsey Shire Council and the NSW Department of Primary Industries (Office of Water). The summary report was published under the National Water Commission's 'Waterlines' series. This executive summary document is supported by related publications that deal with the following topics: 1. hydrogeology, monitoring and hydrochemistry; 2. development of a groundwater flow and transport model for the Macleay Sands Aquifer; 3. mapping and risk assessment of groundwater-dependent ecosystems (GDEs); 4. development and application of early warning indicators to assess the condition of groundwater resources; and 5. socioeconomic assessment and cost-benefit analysis, The key project objective was to develop an integrated approach for managing the availability and quality of coastal groundwater resources so that coastal aquifers do not become overallocated, depleted or degraded as a consequence of increasing demand from rapidly expanding urban centres such as South West Rocks. The second objective was to combine groundwater and seawater intrusion modelling tools, assessment of groundwater dependent ecosystems (GDEs), and a framework for applying indicators and cost–benefit analysis to support the long-term management of coastal sand aquifers. These methodologies can then be applied to similar coastal sand dune aquifers along the North Coast of New South Wales and help ensure that any new groundwater sources are developed sustainably, with minimal impact on GDEs such as coastal dune vegetation communities. The study will help improve management of groundwater resources in coastal dune aquifers in the Mid North Coast region and, potentially, other coastal communities reliant on coastal dune systems for water supplies.