From 1 - 10 / 22
  • macrofossil biostratigraphic analysis of samples taken from Cambrian units in GSQ Mt Whelan 1 well

  • The series of samples forwarded for micro-palaeontological examination was from the depth of 1275 feet down to 1553 feet and was in continuation of that reported upon on 19/1/42.

  • This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the brachiopod Atrypa duntroonensis. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.

  • Stratigraphic drill hole NDI Carrara 1 was drilled as a collaboration between Geoscience Australia (GA), the Northern Territory Geological Survey (NTGS) and the Mineral Exploration Cooperative Research Centre (MinEx CRC). It reached a total depth of 1751 m in late 2020 and is the first drill hole to intersect the undifferentiated Proterozoic rocks of the Carrara Sub-Basin. It intersected approximately 630 m of Cambrian Georgina Basin sedimentary rocks overlying the ~1100 m of Proterozoic carbonates, black shales and other siliciclastics of the Carrara Sub-Basin succession. The formational assignments of the Georgina Basin succession are preliminary and were assigned in the field. The units intersected comprise the Border Waterhole Formation (~531m to ~630m), which is overlain by the Currant Bush Limestone (~249m to ~531m), which in turn is overlain by the Camooweal Dolostone (0m to ~249m). Of these, only the lower 80% of the Currant Bush Limestone and the entire Border Waterhole Formation were cored. This report presents biostratigraphic results from macrofossil examination of NDI Carrara 1 core samples within the Georgina Basin section.

  • The upper Permian to Lower Triassic sedimentary succession in the southern Bonaparte Basin represents an extensive marginal marine depositional system that hosts several gas accumulations, including the Blacktip gas field that has been in production since 2009. Development of additional identified gas resources has been hampered by reservoir heterogeneity, as highlighted by preliminary results from a post drill analyses of wells in the study area that identify reservoir effectiveness as a key exploration risk. The sedimentary succession that extends across the Permian–Triassic stratigraphic boundary was deposited during a prolonged marine transgression and shows a transition in lithofacies from the carbonate dominated Dombey Formation to the siliciclastic dominated Tern and Penguin formations. Recent improvements in chronostratigraphic calibration of Australian biostratigraphic schemes, spanning the late Permian and Early Triassic, inform our review of available palynological data and re-interpretation and infill sampling of well data. The results provide a better resolved, consistent and up-to-date stratigraphic scheme, allowing an improved understanding of the timing, duration, and distribution of depositional environments of the upper Permian to Lower Triassic sediments across the Petrel Sub-basin and Londonderry High. <b>Citation:</b> Owens R., Kelman A., Khider K., Iwanec J., Bernecker T. (2022) Addressing exploration uncertainties in the southern Bonaparte Basin: enhanced stratigraphic control and post drill analysis for upper Permian plays. <i>The APPEA Journal</i> 62, S474-S479

  • This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the trilobite Batocara mitchelli. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.

  • macrofossil biostratigraphic analysis of samples taken from Cambrian units in Todd 1 well

  • This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the graptolite Monograptus exiguus. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.

  • The collection of rocks from the Ok Ti River, Western Papua, was made by Mr. L. Austen in 1922 and is housed in the Commonwealth Palaeontological Collection. It consists of shelly and foraminiferal limestones of Miocene age. The present examination of the collection is being undertaken at the request of the Australasian Petroleum Company, Melbourne.

  • This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the brachiopod Retziella capricornae. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.