From 1 - 10 / 10
  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This Record presents new U-Pb zircon geochronology from the Loch-Lilly Kars and Lake Wintlow (as described by Clark et al. 2024) Belts of the central Delamerian Orogen (Foden et al., 2020; Gilmore et al., 2023; Mole et al., 2023), performed on Geoscience Australia’s (GA) sensitive high-resolution ion microprobe (SHRIMP). The eight samples presented here (three sedimentary and five igneous rocks; Table i) were collected during Geoscience Australia’s drilling campaign across the region, which consisted of 17 drill-holes (Pitt et al., 2023), using two drilling techniques (coiled-tube rotary and conventional diamond). This work was performed as part of the MinEx CRC National Drilling initiative (NDI) and Geoscience Australia’s Darling-Curnamona-Delamerian project of the Exploring for the Future program (EFTF; <a href="https://www.eftf.ga.gov.au/">https://www.eftf.ga.gov.au/</a>). The primary aims of this drilling were to (1) understand and constrain the geology of the southern Loch-Lilly Kars Belt; and (2) assess whether Cambrian magmatic rocks continued to the south-west in the Lake Wintlow Belt, marking a possible continuation of the Stavely Belt volcanic arc rocks observed in western Victoria (Bowman et al., 2019; Lewis et al., 2016; Lewis et al., 2015; Schofield, 2018; Figure i). As both these regions are covered, this new drilling and the geochronology they allow provide the first constraints on the age of these rock units. In addition, due to the lack of surface correlation and detailed geological mapping, these units currently have no officially-defined stratigraphic nomenclature and remain unnamed. For detailed information on all drill-holes completed as part of the survey, we direct readers to the summary report by Pitt et al. (2023): <a href="https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/148639">eCat 148639</a>.

  • The National Drilling Initiative (NDI) will manage and deliver drilling programs in multiple case study areas proposed by MinEx CRC’s partner geological survey organisations. The NDI vision is to drill multiple holes in a region to map the regional geology and architecture and define the potential for mineral systems in 3D. The areas shown in this web service describe the spatial locations of the study areas.

  • The National Drilling Initiative (NDI) will manage and deliver drilling programs in multiple case study areas proposed by MinEx CRC’s partner geological survey organisations. The NDI vision is to drill multiple holes in a region to map the regional geology and architecture and define the potential for mineral systems in 3D. The areas shown in this web service describe the spatial locations of the study areas.

  • The National Drilling Initiative (NDI) will manage and deliver drilling programs in multiple case study areas proposed by MinEx CRC’s partner geological survey organisations. The NDI vision is to drill multiple holes in a region to map the regional geology and architecture and define the potential for mineral systems in 3D. The areas shown in this web service describe the spatial locations of the study areas.

  • <div>As part of the Delamerian Margins NSW National Drilling Initiative campaign, seventeen stratigraphic boreholes were drilled between Broken Hill and Wentworth, in Western NSW. These holes were designed to test stratigraphic, structural, and mineral systems questions in the New South Wales portion of the Delamerian Margin. Drilling was conducted between March and June 2023 and was undertaken by Geoscience Australia in collaboration with MinEx CRC. This report outlines basic borehole targeting rationale, borehole metadata, and analyses performed immediately following drilling to accompany data available through the Geoscience Australia portal.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>

  • <div>This Record presents new zircon U-Pb geochronological data, obtained via Sensitive High Resolution Ion Microprobe (SHRIMP), for 12 samples of igneous rocks from central and southern New South Wales, as part of an ongoing Geochronology Project conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework agreement. Eight samples were selected to better understand the geological evolution and mineralisation history of areas prioritised for investigation by the MinEx Co-operative Research Centre (MinEx CRC) under its National Drilling Initiative (NDI) program. Three samples are from the northern Molong Volcanic Belt east of Dubbo (‘MXDU’), and five are from the eastern Lachlan Orogen near Forbes (‘MXFO’). The remaining four samples are from the central Lachlan Orogen in southern NSW, in support of GSNSW’s East Riverina mapping program (‘ERIV’). The results herein correspond to U-Pb SHRIMP zircon analyses undertaken by the GSNSW-GA Geochronology Project during the July 2020–June 2021 reporting period. All quoted uncertainties are 95% confidence intervals.</div> <b>Bibliographic reference: </b> Jones, S.L., Bodorkos, S., Eastlake, M.A.S., Campbell, L.M., Hughes, K.S., Blevin, P.L. and Fitzherbert, J.A., 2023. <i>New SHRIMP U-Pb zircon ages from the Lachlan Orogen, NSW: Dubbo, Forbes and East Riverina areas, July 2020–June 2021. </i>Record 2023/36, Geoscience Australia, Canberra. Report GS2023/0017, Geological Survey of New South Wales, Maitland. https://doi.org/10.26186/147971

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. A comprehensive geochemical program designed to provide information about the region’s resource potential was carried out on samples collected at up to 4 meter intervals. This report presents data from magnetic susceptibility analyses undertaken by Geoscience Australia on selected rock samples to establish their ability to be magnetised in an applied external magnetic field.

  • As part of Geoscience Australia's Exploring for the Future program, the East Tennant region, which is centred on the Barkly Roadhouse in the Northern Territory, was identified as having favourable geological and geophysical indicators of mineral systems potential. Potentially prospective stratigraphy in the East Tennant region is completely concealed beneath Mesoproterozoic to Quaternary cover sequences. Prior to 2020 basement rocks in the East Tennant region were only known from a handful of legacy boreholes, supported by geophysical interpretation. In order to test geophysical interpretations and obtain additional samples of basement rocks for detailed analysis, a stratigraphic drilling campaign was undertaken in the East Tennant region as part of the MinEx CRC’s National Drilling Initiative. Ten stratigraphic boreholes were drilled through the cover sequences and into basement for a total of nearly 4000 m, including over 1500 m of diamond cored basement rocks to be used for scientific purposes. Inorganic geochemical samples from East Tennant National Drilling Initiative boreholes were taken to characterise cover and basement rocks intersected during drilling. Two sampling approaches were implemented based on the rocks intersected: 1) Borehole NDIBK04 contained localised sulphide mineralisation and elevated concentrations of several economically-significant elements in portable X-ray fluorescence data. In order to understand the geochemical variability and distribution of elements important for mineral system characterisation, the entire basement interval was sampled at nominal one metre intervals. This spacing was reduced to between 0.5 and 0.25 m from 237 m to 263 m to better understand a more intense zone of mineralisation, and 2) Samples from boreholes NDIBK01, NDIBK02, NDIBK03, NDIBK05, NDIBK06, NDIBK07, NDIBK08, NDIBK09 and NDIBK10 were selected to capture lithological and geochemical variability to establish bulk rock geochemical compositions for further interpretation. Attempts were made to sample representative, lithologically consistent intervals. A total of 402 samples were selected for analysis. Sample preparation was completed at Geoscience Australia and Bureau Veritas, with all analyses performed by Bureau Veritas in Perth. All samples were submitted for X-ray fluorescence (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), FeO determination, and loss on ignition (LOI). Samples from borehole NDIBK04 also underwent total combustion C and S, and Pb collection fire assay by ICP-MS for determination of Au, Pt and Pd concentrations. This data release presents inorganic geochemistry data acquired on rock samples from the ten East Tennant National Drilling Initiative boreholes.

  • The National Drilling Initiative (NDI) will manage and deliver drilling programs in multiple case study areas proposed by MinEx CRC’s partner geological survey organisations. The NDI vision is to drill multiple holes in a region to map the regional geology and architecture and define the potential for mineral systems in 3D. The areas shown in this web service describe the spatial locations of the study areas.

  • New multidisciplinary data collected as part of the Exploring for the Future (EFTF) Program has changed our understanding of the basement geology of the East Tennant region in the Northern Territory, and its potential to host mineralisation. To ensure this understanding is accurately reflected in geological maps, we undertake a multidisciplinary interpretation of the basement geology in East Tennant. For the purposes of this product, basement comprises polydeformed and variably metamorphosed rocks of the pre-1800 Ma Warramunga Province, which are exposed in outcrop around Tennant Creek, to the west. In the East Tennant region, these rocks are entirely covered by younger flat-lying strata of the Georgina Basin, and locally covered by the Kalkarindji Suite, and South Nicholson Basin (Ahmad 2000). The data from this solid geology map are designed to be included in mineral potential models and future updates to Geoscience Australia’s chronostratigraphic solid geology maps. This interpretation comprises a Geographic Information System (GIS) dataset containing basement geology polygons, faults and contacts. Geological units are consistent with the Australian Stratigraphic Units Database and faults utilise existing conventions followed by Geoscience Australia’s chronostratigraphic solid geology products (Stewart et al. 2020). To aid in understanding the data, we have added a three-stage fault hierarchy. Basement geology was interpreted at 1:100000 scale (but is intended for display at 1:250000 scale) using geophysical imagery, namely total magnetic intensity and vertical derivatives of these data, and gravity. The interpretation makes use of numerous new datasets collected as part of the EFTF program. These include a new 2-km spaced gravity grid over most of East Tennant, drill-core lithology from new boreholes drilled as part of the MinEx CRC National Drilling Initiative, airborne electromagnetic data collected under the AusAEM program, new active seismic data, and geochronology from legacy boreholes. These data are available to view and download from the Geoscience Australia portal (https://portal.ga.gov.au). We interpret that basement in the East Tennant region does represent the eastern continuation of the Warramunga Province. There is no obvious geophysical or geological boundary between Tennant Creek and East Tennant. However, the East Tennant region mostly lacks stratigraphy equivalent to the Ooradidgee Group, which overlies and postdates mineralisation in turbiditic rocks of the Warramunga Formation at Tennant Creek. Instead, East Tennant is underlain by a widespread succession of clastic metapelitic rocks that bear many lithological and geochronological similarities to the Warramunga Formation (Cross et al. 2020). Other important outcomes of this work include the documentation of significant regional faults and shear zones and abundant intrusive rocks at East Tennant. Geophysical and geochronological data suggest that this deformation and magmatism is the eastern continuation of ~1850 Ma tectonism preserved at Tennant Creek (e.g. Cross et al. 2020). NOTE: Specialised (GIS) software is required to view this data. References: Ahmad M, 2000. Geological map of the Northern Territory. 1:2 500 000 scale. Northern Territory Geological Survey, Darwin. Cross AJ, Clark AD, Schofield A and Kositcin N, 2020. New SHRIMP U-Pb zircon and monazite geochronology of the East Tennant region: a possible undercover extension of the Warramunga Province, Tennant Creek. In: Czarnota K, Roach I, Abbott S, Haynes M, Kositcin N, Ray A and Slatter E (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4. Stewart AJ, Liu SF, Bonnardot M-A, Highet LM, Woods M, Brown C, Czarnota K and Connors K, 2020. Seamless chronostratigraphic solid geology of the North Australian Craton. In: Czarnota K, Roach I, Abbott S, Haynes M, Kositcin N, Ray A and Slatter E (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.