From 1 - 10 / 19
  • <div>The production of rare earth elements is critical for the transition to a low carbon economy. Carbonatites (&gt;50% carbonate minerals) are one of the most significant sources of rare earth elements (REEs), both domestically within Australia, as well as globally. Given the strategic importance of critical minerals, including REEs, for the Australian national economy, a mineral potential assessment has been undertaken to evaluate the prospectivity for carbonatite-related REE (CREE) mineralisation in Australia. CREE deposits form as the result of lithospheric- to deposit-scale processes that are spatially and temporally coincident.</div><div><br></div><div>Building on previous research into the formation of carbonatites and their related REE mineralisation, a mineral system model has been developed that incorporates four components: (1) source of metals, fluids, and ligands, (2) energy sources and fluid flow drivers, (3) fluid flow pathways and lithospheric architecture, and (4) ore deposition. This study demonstrates how national-scale datasets and a mineral systems-based approach can be used to map the mineral potential for CREE mineral systems in Australia.</div><div><br></div><div>Using statistical analysis to guide the feature engineering and map weightings, a weighted index overlay method has been used to generate national-scale mineral potential maps that reduce the exploration search space for CREE mineral systems by up to ∼90%. In addition to highlighting regions with known carbonatites and CREE mineralisation, the mineral potential assessment also indicates high potential in parts of Australia that have no previously identified carbonatites or CREE deposits.</div><div><br></div><div><b>Citation: </b>Ford, A., Huston, D., Cloutier, J., Doublier, M., Schofield, A., Cheng, Y., and Beyer, E., 2023. A national-scale mineral potential assessment for carbonatite-related rare earth element mineral systems in Australia, <i>Ore Geology Reviews</i>, V. 161, 105658. https://doi.org/10.1016/j.oregeorev.2023.105658</div>

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation.</div><div><br></div><div>This contribution presents data on the distribution and geology of Australian alkaline and related rocks of Proterozoic age. Proterozoic alkaline and related rocks are primarily restricted to the western two-thirds of the Australia continent, congruent with the distribution of Proterozoic rocks more generally. Proterozoic alkaline rock units are most abundant in Western Australia and the Northern Territory, with minor occurrences in South Australia, and the western regions of Queensland, New South Wales and Tasmania.</div><div><br></div><div>The report and accompanying GIS document the distribution, age, lithology, mineralogy and other characteristics of these rocks (e.g., extrusive/intrusive, presence of mantle xenoliths, presence of diamonds), as well as references for data sources and descriptions. The report also reviews the nomenclature of alkaline rocks and classification procedures. GIS metadata are documented in the appendices.&nbsp;</div>

  • <div>The production of rare earth elements (REEs) is critical to the global transition to a low carbon economy. Carbonatites represent a significant source of REEs, both domestically within Australia, as well as globally. Given their strategic importance for the Australian economy, a national mineral potential assessment has been undertaken as part of the Exploring for the Future program at Geoscience Australia to evaluate the potential for carbonatite-related REE (CREE) mineral systems. Rather than aiming to identify individual carbonatites and/or CREE deposits, the focus of the mineral potential assessment is to delineate prospective belts or districts within Australia that indicate the presence of favourable criteria, particularly in terms of lithospheric architecture, that may lead to the formation of a CREE mineral system.</div><div><br></div><div>This study demonstrates how national-scale multidisciplinary precompetitive geoscience datasets can be integrated using a hybrid methodology that incorporates robust statistical analysis with mineral systems expertise to predictively map areas that have a higher geological potential for the formation of CREE mineral systems and effectively reduce the exploration search space. Statistical evaluation of the relationship between different mappable criteria that represent spatial proxies for mineral system processes and known carbonatites and CREE deposits has been undertaken to test previously published hypotheses on how to target CREE mineral systems at a broad-scale. The results confirm the relevance of most criteria in the Australian context, while several new criteria such as distance to large igneous province margins and distance to magnetic worms have also been shown to have a strong correlation with known carbonatites and CREE deposits. Using a hybrid knowledge- and data-driven mineral potential mapping approach, the mineral potential map predicts the location of known carbonatite and CREE deposits, while also demonstrating additional areas of high prospectivity in regions with no previously identified carbonatites or CREE mineralisation.</div> Presented at the AusIMM Critical Minerals Conference 2023.

  • The Mineral Potential web service provides access to digital datasets used in the assessment of mineral potential in Australia. The service includes maps showing the potential for sediment-hosted base metal mineral systems in Australia.

  • <div>Mineral exploration and development involves the selection of potential projects which must be evaluated across disparate characteristics. However, the distinct metrics involved are typically difficult to reconcile (e.g. geological potential, environmental impact, jobs created, value generated, etc.). Separate stakeholders—with different goals and attitudes—will reasonably differ in their preferences as to which categories to prioritize and how much weight to give to each. These conflicting preferences can obscure optimal outcomes and confound project selection.</div><div><br></div><div>In this presentation, we will discuss how early-stage exploration decisions can be treated as multi-criteria optimization problems. We show how this approach can be used to effectively evaluate and communicate competing criteria, and locate regions that perform best under a range of different metrics. We then outline a mapping framework that identifies regions that perform best in terms of geological potential, economic value and environmental impact and demonstrate this approach in a real-word example that highlights new exploration targets in the Australian context. Abstract presented at the American Geophysical Union (AGU) Fall Meeting 2023 (AGU23) https://www.agu.org/fall-meeting

  • <div>Australian sediment-hosted mineral systems are important sources of base metals and critical minerals that are vital to delivering Australia’s low-carbon economy. In Australia, sediment-hosted resources account for ~82% and ~86% of the total zinc (Zn) and lead (Pb) resources respectively. Given their significance to the Australian economy, four national-scale mineral potential models for sediment-hosted Zn-Pb mineral systems have been developed: clastic-dominated siliciclastic carbonate, clastic-dominated siliciclastic mafic, Mississippi Valley-type and Irish-type. In addition to the potential for Zn-Pb mineralisation, the uncertainty related to data availability has been examined. The mineral potential models were created using a mineral systems-based approach where mappable criteria have been used to assess the prospectivity of each system. Each model has been derived from a large volume of precompetitive geoscience data. The clastic-dominated siliciclastic carbonate mineral potential model predicts 92% of known deposits and occurrences within 15.5% of the area, the clastic-dominated siliciclastic mafic mineral potential model predicts 85% of deposits and occurrences within 27% of the area, and the Mississippi Valley-type mineral potential model predicts 66% of known deposits and occurrences within 31% of the area. Each model successfully predict the location of major sediment-hosted Zn-Pb deposits while highlighting new areas of elevated prospectivity in under-explored regions of Australia, reducing the exploration search space by up to 85% for sediment-hosted Zn-Pb mineral systems.</div>

  • <div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>The Australian Lithospheric Architecture Magnetotelluric project (AusLAMP) is a collaborative, national survey that aims to acquire long period magnetotelluric (MT) data at 0.5° spacing (~55 km) across the Australian continent. AusLAMP started in 2013 and is ~51% complete to date. Over the last decade, regional-scale conductivity/resistivity AusLAMP models have been produced following data acquisition campaigns, but a levelled national model has not emerged. Here we present the largest AusLAMP conductivity model incorporating 85% of data acquired to date. The model images the conductivity structure of the Australian lithosphere across most parts of central and eastern Australia, including Tasmania. The resolved resistivity structures broadly conform with identified major geological domains and crustal boundaries but also reveal significant variations within geological provinces, orogens and cratons. There are strong spatial associations between crustal/mantle conductors and copper and gold deposits and carbonatites, which provide further evidence that major lithospheric conductors control the distributions of a range of mineral systems. This new model is a powerful bottom-up approach to inform exploration, particularly in covered and under-explored regions.</div><div><br></div><div><strong>Citation: </strong>Duan J. & Huston D., 2024. AusLAMP - mapping lithospheric architecture and reducing exploration search space in central and eastern Australia. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/149675</div>

  • <div>Maps showing the potential for iron oxide copper-gold (IOCG) mineral systems in Australia. Each of the mineral potential maps is a synthesis of four component layers (source of metals, fluids and ligands; energy sources and fluid flow drivers; fluid flow pathways and architecture; and ore depositional gradients). The model uses a hybrid data-driven and knowledge driven methodology to produce the final mineral potential map for the mineral system. An uncertainty map is provided in conjunction with the mineral potential maps that represents the availability of data coverage over Australia for the selected combination of input maps. Uncertainty values range between 0 and 1, with higher uncertainty values being located in areas where more input maps are missing data or have unknown values. The input maps and mineral deposits and occurrences used to generate the mineral potential map are provided along with an assessment criteria table which contains information on the map creation.</div>

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract <strong> </strong></div><div><br></div><div><strong>Short abstract: </strong>There is an increased international focus on achieving high environmental, socio-economic, and governance (ESG) outcomes within mineral supply chains, in addition to delivering positive economic results. Mineral exploration and development projects must balance these disparate objectives to the satisfaction of separate stakeholders. However, the challenge of reconciling distinct preferences can obscure viable outcomes and confound project selection, particularly in the early stages of project development. Here, we discuss how such investment decisions can be treated as multicriteria optimization problems. In appraising the pre-competitive potential for nickel sulphide developments, we show how this approach can be used to effectively evaluate competing objectives and to locate regions that perform best under a range of different metrics. We outline a mapping framework that identifies Australian regions that optimally balance geological potential, economic value, and environmental impact. Our workflow creates a new capability within Australia to incorporate high-level, holistic information into the earliest stages of exploration. While this abstract focuses on mineral exploration, the modelling could be extended to other Australian resource development applications. Importantly, our results further underscore the need to compile baseline ESG datasets across Australia to help drive sustainable exploration decisions.</div><div><br></div><div><strong>Citation:</strong> Walsh S.D.C., Haynes M.W. &amp; Wang C., 2024. Multicriteria resource potential mapping: balancing geological, economic &amp; environmental factors. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/149250</div>

  • <div><strong>Output type:</strong> Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short abstract: </strong>Iron oxide copper-gold (IOCG) deposits are a significant source of copper and gold and can also contain critical minerals that are required for the transition to a low carbon economy and to increase Australia’s security of mineral supply. Given their strategic importance, a national-scale assessment of the mineral potential for IOCG mineral systems in Australia has been undertaken using a hybrid data- and knowledge-driven approach. The national-scale assessment includes the evaluation of the statistical importance of mappable criteria used in previously published regional-scale IOCG models, resulting in the removal of five criteria and the inclusion of four new or revised criteria derived from datasets developed through the Exploring for the Future program. The new mineral potential model successfully predicts the location of 91.7% of known IOCG deposits and occurrences in 8.3% of the area, reducing the exploration search space by 91.7% and highlighting new areas of elevated prospectivity in under-explored regions of Australia. When compared to existing regional-scale mineral potential assessments for IOCG mineral systems published by Geoscience Australia, the new national-scale model demonstrates higher prospectivity in areas with known IOCG deposits and occurrences, while also highlighting new prospective areas for IOCG mineral systems. Areas with assessed high prospectivity but lacking known IOCG mineralisation include parts of the Curnamona, Etheridge and Musgrave provinces, and the Delamerian, Halls Creek and Tanami orogens.</div> <div><strong>Citation</strong>: Cloutier J., et al., 2024. First national mineral system assessment of Australia's iron oxide copper-gold potential. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149357</div>