From 1 - 2 / 2
  • Explore important concepts about groundwater using this comprehensive teaching resource. This mini unit includes case studies of Australian groundwater topics, First Nations Australian perspectives about water use and groundwater are also included. This mini unit included four files - the guide, 2 x student activities and a kml file. The guide includes educator tips as well as answers to the student activities. Suitable for upper primary to lower secondary students.

  • <div>This Record presents 16 new Sensitive High Resolution Ion Micro Probe (SHRIMP) U-Pb zircon results obtained under the auspices of the Geological Survey of Queensland-Geoscience Australia (GSQ-GA) National Collaborative Framework (NCF) geochronology project in 2023-2024. These data were collected in support of the Peralkaline Magmatic Systems Project and the Northeast Queensland Deposits Project led by the GSQ. Cenozoic felsic igneous rocks in Queensland occur in scattered localities between Mackay and the southern Border Ranges and as far west as areas around Emerald. These rocks are primarily associated with eroded central volcanoes and exhibit well-defined age progression resulting from movement of the Australian plate over a mantle plume during the Cenozoic (see Cohen et al., 2013a, b). The location and existing K-Ar and Ar-Ar age data for the central volcanoes show a strong younging to the south, extending from Cape Hillsborough (ca. 33 Ma) through Nebo, Peak Range and Springsure to Buckland (ca. 27 Ma), forming the northernmost part of the Cosgrove Hotspot Track (Davies et al., 2015). Existing geochronology for units along this track is dominated by K-Ar and Ar-Ar data with only a few units having reconnaissance-quality U-Pb zircon ages. Our study aimed to produce new, high-quality emplacement ages to compare with existing data, constrain the ages of undated units and test correlations, and to identify any inheritance that could help to understand their origin.</div><div><br></div>