Basement
Type of resources
Keywords
Publication year
Topics
-
Crustal architecture places first-order controls on the distribution of mineral and energy resources. However, despite its importance, it is poorly constrained over much of northern Australia. Here, we present a full crustal interpretation of deep seismic reflection profile 18GA-KB1 that extends over 872 km from the Eo- to Mesoarchean Pilbara Craton to the Paleoproterozoic Aileron Province, transecting a range of stratigraphic and tectonic basement units, some of which are completely concealed by younger rocks. The seismic profile provides the first coherent image through this relatively poorly understood part of Australian geology and yields major new insights about the crustal architecture, geometry and definition of the different geological and seismic provinces and their boundaries. Key findings include the following: (1) The Pilbara Craton shows a three-component horizontal crustal layering, where the granite– greenstone East Pilbara Terrane is largely confined to the upper crust. (2) The Pilbara Craton has an extensive reworked margin, the Warrawagine Seismic Province, that thins towards the east, and underlies the western and central Rudall Province. (3) At the largest scale, the Rudall Province shows an approximately funnel-shaped geometry, with limited differences in seismic character between the various terranes. (4) The western Kidson Sub-basin is underlain by rocks of the Neoproterozoic Yeneena Basin and Rudall Province. (5) The central and eastern part of the Kidson Sub-basin rests on the coherent, relatively poorly structured Punmu Seismic Province, which is truncated by the steep, crustal-scale Lasseter Shear Zone, that marks the boundary to the Aileron Province to the east. <b>Citation:</b> Doublier, M.P., Johnson, S.P., Gessner, K., Howard, H., Chopping, R., Smithies, R.H., Martin, D.McB.,Kelsey, D.E., Haines, P.w., Hickman, A., Czarnota, K., Southby, C., Champion, D.C., Huston, D.L., Calvert, A.J., Kohanpour, F., Moro, P., Costelloe, R., Fomin, T. and Kennett, B.L.N., 2020. Basement architecture from the Pilbara Craton to the Aileron Province: new insights from deep seismic reflection line 18GA-KB1. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
The document summarises new seismic interpretation metadata for two key horizons from Base Jurassic to mid-Cretaceous strata across the western and central Eromanga Basin, and the underlying Top pre-Permian unconformity. New seismic interpretations were completed during a collaborative study between the National Groundwater Systems (NGS) and Australian Future Energy Resources (AFER) projects. The NGS and AFER projects are part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on previous work undertaken as part of the ‘Assessing the Status of Groundwater in the Great Artesian Basin’ (GAB) Project, commissioned by the Australian Government through the National Water Infrastructure Fund – Expansion (Norton & Rollet, 2022; Vizy & Rollet, 2022; Rollet et al., 2022; Rollet et al., in press.), the NGS Project (Norton & Rollet, 2023; Rollet et al., 2023; Vizy & Rollet, 2023) and the AFER Project (Bradshaw et al., 2022 and in press, Bernecker et al., 2022, Iwanec et al., 2023; Iwanec et al., in press). The recent iteration of revisions to the GAB geological and hydrogeological surfaces (Vizy & Rollet, 2022) provides a framework to interpret various data sets consistently (e.g., boreholes, airborne electromagnetic, seismic data) and in a 3D domain, to improve our understanding of the aquifer geometry, and the lateral variation and connectivity in hydrostratigraphic units across the GAB (Rollet et al., 2022). Vizy and Rollet (2022) highlighted some areas with low confidence in the interpretation of the GAB where further data acquisition or interpretation may reduce uncertainty in the mapping. One of these areas was in the western and central Eromanga Basin. New seismic interpretations are being used in the western Eromanga, Pedirka and Simpson basins to produce time structure and isochore maps in support of play-based energy resource assessment under the AFER Project, as well as to update the geometry of key aquifers and aquitards and the GAB 3D model for future groundwater management under the NGS Project. These new seismic interpretations fill in some data and knowledge gaps necessary to update the geometry and depth of key geological and hydrogeological surfaces defined in a chronostratigraphic framework (Hannaford et al., 2022; Bradshaw et al., 2022 and in press; Hannaford & Rollet, 2023). The seismic interpretations are based on a compilation of newly reprocessed seismic data (Geoscience Australia, 2022), as part of the EFTF program, and legacy seismic surveys from various vintages brought together in a common project with matching parameters (tying, balancing, datum correcting, etc.). This dataset has contributed to a consolidated national data coverage to further delineate groundwater and energy systems, in common data standards and to be used further in integrated workflows of mineral, energy and groundwater assessment. The datasets associated with the product provides value added seismic interpretation in the form of seismic horizon point data for two horizons that will be used to improve correlation to existing studies in the region. The product also provides users with an efficient means to rapidly access a list of core data used from numerous sources in a consistent and cleaned format, all in a single package. The following datasets are provided with this product: 1) Seismic interpretation in a digital format (Appendix A), in two-way-time, on key horizons with publically accessible information, including seismic interpretation on newly reprocessed data: Top Cadna-owie; Base Jurassic; Top pre-Permian; 2) List of surveys compiled and standardised for a consistent interpretation across the study area (Appendix B). 3) Isochore points between Top Cadna-owie and Base Jurassic (CC10-LU00) surfaces (Appendix C). 4) Geographical layer for the seismic lines compiled across Queensland, South Australia and the Northern Territory (Appendix D). These new interpretations will be used to refine the GAB geological and hydrogeological surfaces in this region and to support play-based energy resource assessments in the western Eromanga, Pedirka and Simpson basins.
-
Geognostics OZ SEEBASE depth‐to‐economic basement model of Australia and ancillary datasets. In this update, basement is defined as the top of igneous or metamorphic crust at the base of undeformed sediments, regardless of age. Note that in deeper parts of some basins, such as the greater McArthur Basin, the deepest section may be metasedimentary. Data provided by Geognostics, 2021. OZ SEEBASE® 2021 (Version 1, May 2021). Geognostics Australia Pty Ltd, https://www.geognostics.com/oz‐seebase‐2021. Web Map Service layers include: - Depth to Basement Image - Depth to Basement Grid - Sediment Thickness Grid - Derivative OZ SEEBASE Sediment Thickness Grid - Basement Thickness Grid Disclaimer: The conclusions and recommendations expressed in this Geognostics digital release represent the opinions of the authors based on the data available to them. No liability is accepted for the total accuracy of this report or related datasets, nor any commercial decisions or actions made resulting from this report.