From 1 - 10 / 548
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Rason Throssel combined magnetic grid geodetic has a cell size of 0.00042 degrees (approximately 44m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1991 by the WA Government, and consisted of 107758 line-kilometres of data at a line spacing between 200m and 400m, and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Robert combined magnetic grid geodetic has a cell size of 0.00063 degrees (approximately 66m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1991 by the WA Government, and consisted of 82900 line-kilometres of data at 300m line spacing and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Tanami NS 1D - TMI grid (AWAGS) has a cell size of 0.00018 degrees (approximately 20m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2018 by the NT Government, and consisted of 2188 line-kilometres of data at 100m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Tanami EW 5N - TMI grid (AWAGS) has a cell size of 0.00018 degrees (approximately 20m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2018 by the NT Government, and consisted of 11735 line-kilometres of data at 100m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Tanami NS 5S - TMI grid (AWAGS) has a cell size of 0.00018 degrees (approximately 20m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2018 by the NT Government, and consisted of 15632 line-kilometres of data at 100m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Tanami EW 5ZA - TMI grid (AWAGS) has a cell size of 0.00018 degrees (approximately 20m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2018 by the NT Government, and consisted of 1547 line-kilometres of data at 100m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Tanami NS 5ZB - TMI grid (AWAGS) has a cell size of 0.00018 degrees (approximately 20m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2018 by the NT Government, and consisted of 3019 line-kilometres of data at 100m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Crossland Noonkanbah East Canning 1 GA Canning Basin Onshore Magnetic Grid Geodetic has a cell size of 0.00083 degrees (approximately 90m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2007 by the WA Government, and consisted of 197185 line-kilometres of data at a line spacing between 400m and 800m, and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Mount Peake-Crawford - TMI grid (AWAGS) has a cell size of 0.00019 degrees (approximately 20m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2019 by the NT Government, and consisted of 136990 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSQ Charters Towers Clermont magnetic grid geodetic has a cell size of 0.00083 degrees (approximately 89m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1987 by the QLD Government, and consisted of 40255 line-kilometres of data at 400m line spacing and 60m terrain clearance.