From 1 - 8 / 8
  • The greater Phoenix area in the Bedout Sub-basin has experienced recent exploration success on Australia’s North West Shelf (NWS). Oil and gas discoveries in the Triassic reservoirs of the Keraudren Formation and Locker Shale have revived interest in mapping the distribution and lateral facies variation of the Triassic succession from the Bedout Sub-basin into the adjacent underexplored Beagle and Rowley sub-basins. This multi-disciplinary study integrating structural architecture, sequence stratigraphy, palaeogeography and geochemistry has mapped the spatial and temporal distributions of Triassic source rocks on the central NWS. The Lower‒Middle Triassic palaeogeography is dominated by a deltaic system building from the Bedout Sub-basin into the Beagle Sub-basin. The oil sourced and reservoired within the Lower‒Middle Triassic sequences at Phoenix South 1 is unique to the Bedout Sub-basin, compared to other oils along the NWS. Its mixed land-plant and algal biomarker signature is most likely sourced locally by fluvial-deltaic mudstones within the TR10‒TR14 or TR15 sequences and represents a new petroleum system on the NWS. A Middle Triassic marine incursion is recorded in the Bedout Sub-basin with the development of a carbonate platform while in the Rowley Sub-basin, volcanics have been penetrated at the top of the thick Lower‒Middle Triassic sediment package. The Late Triassic palaeogeographic map suggests a carbonate environment in the Rowley Sub-basin distinct to the clastic-dominated fluvial-deltaic environment in the Beagle Sub-basin. This information combined with results of well-based geochemical analyses highlights the potential for hydrocarbon generation within the Upper Triassic in these sub-basins. This extended abstract was presented at the Australasian Exploration Geoscience Conference (AECG) 2019

  • The Roebuck Basin and the adjoining Beagle and Barcoo sub-basins are underexplored areas on Australia’s North West Shelf that are undergoing renewed exploration interest since the discovery of oil at Phoenix South 1 in 2014 and subsequent hydrocarbon discoveries in the Bedout Sub-basin. A well folio of 24 offshore wells across the Beagle, Bedout, Rowley and Barcoo sub-basins has been compiled as part of Geoscience Australia’s hydrocarbon prospectivity assessment across the region. It consists of composite well log plots and well correlations that summarise lithology, lithostratigraphy, Geoscience Australia’s newly acquired biostratigraphic and geochemical data as well as results of petrophysical analysis. A revised sequence-stratigraphic interpretation, key petroleum system elements and drilling results are also documented. The wells dominantly target Triassic shoreward facies (Keraudren Formation) as the primary reservoir objective and Jurassic fluvial-deltaic (Depuch Formation) and/or Lower Cretaceous sandy deltaic facies as the secondary objective. The Keraudren Formation sandstones are sealed intra-formationally either by discontinuous units and/or by the regional Cossigny Member. The Jurassic Depuch Formation sandstones are sealed by regional Lower Cretaceous mudstones. Both charge and structure have been identified as critical issues in the Roebuck Basin. In the Beagle Sub-basin, seal integrity and migration pathways are also considered high risk. Well correlations have identified differences in the basin history and provide insights into the distribution of facies and other characteristics of the Jurassic and Triassic successions. <b>Citation:</b> Nguyen Duy, Rollet Nadege, Grosjean Emmanuelle, Edwards Dianne S., Abbott Steve, Orlov Claire, Bernardel George, Nicholson Chris, Kelman Andrew, Khider Kamal, Buckler Tamara (2019) The Roebuck Basin, Beagle and Barcoo Sub-basin well folio. <i>The APPEA Journal</i><b> 59</b>, 920-927.

  • Exploring for the Future (EFTF) is a four-year $100.5 million initiative by the Australian Government conducted by Geoscience Australia in partnership with state and Northern Territory government agencies, CSIRO and universities to provide new geoscientific datasets for frontier regions. As part of this program, Geoscience Australia acquired two new seismic surveys that collectively extend across the South Nicholson Basin (L120 South Nicholson seismic line) and into the Beetaloo Sub-basin of the McArthur Basin (L212 Barkly seismic line). Interpretation of the seismic has resulted in the discovery of new basins that both contain a significant section of presumed Proterozoic strata. Integration of the seismic results with petroleum and mineral systems geochemistry, structural analyses, geochronology, rock properties and a petroleum systems model has expanded the knowledge of the region for energy and mineral resources exploration. These datasets are available through Geoscience Australia’s newly developed Data Discovery Portal, an online platform delivering digital geoscientific information, including seismic locations and cross-section images, and field site and well-based sample data. Specifically for the EFTF Energy project, a petroleum systems framework with supporting organic geochemical data has been built to access source rock, crude oil and natural gas datasets via interactive maps, graphs and analytical tools that enable the user to gain a better and faster understanding of a basin’s petroleum prospectivity. <b>Citation:</b> Henson Paul, Robinson David, Carr Lidena, Edwards Dianne S., MacFarlane Susannah K., Jarrett Amber J. M., Bailey Adam H. E. (2020) Exploring for the Future—a new oil and gas frontier in northern Australia. <i>The APPEA Journal</i><b> 60</b>, 703-711. https://doi.org/10.1071/AJ19080

  • The Source Rock and Fluids Atlas delivery and publication services provide up-to-date information on petroleum (organic) geochemical and geological data from Geoscience Australia's Organic Geochemistry Database (ORGCHEM). The sample data provides the spatial distribution of petroleum source rocks and their derived fluids (natural gas and crude oil) from boreholes and field sites in onshore and offshore Australian basins. The services provide characterisation of source rocks through the visualisation of Pyrolysis, Organic Petrology (Maceral Groups, Maceral Reflectance) and Organoclast Maturity data. The services also provide molecular and isotopic characterisation of source rocks and petroleum through the visualisation of Bulk, Whole Oil GC, Gas, Compound-Specific Isotopic Analyses (CSIA) and Gas Chromatography-Mass Spectrometry (GCMS) data tables. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids that comprise two key elements of petroleum systems analysis. The composition of petroleum determines whether or not it can be an economic commodity and if other processes (e.g. CO2 removal and sequestration; cryogenic liquefaction of LNG) are required for development.

  • The Browse Basin is located offshore on Australia's North West Shelf and is a proven hydrocarbon province hosting gas with associated condensate and where oil reserves are typically small. The assessment of a basin's oil potential traditionally focuses on the presence or absence of oil-prone source rocks. However, light oil can be found in basins where source rocks are gas-prone and the primary hydrocarbon type is gas-condensate. Oil rims form whenever such fluids migrate into reservoirs at pressures less than their dew point (saturation) pressure. By combining petroleum systems analysis with geochemical studies of source rocks and fluids (gases and liquids), four Mesozoic petroleum systems have been identified in the basin. This study applies petroleum systems analysis to understand the source of fluids and their phase behaviour in the Browse Basin. Source rock richness, thickness and quality are mapped from well control. Petroleum systems modelling that integrates source rock property maps, basin-specific kinetics, 1D burial history models and regional 3D surfaces, provides new insights into source rock maturity, generation and expelled fluid composition. The principal source rocks are Early-Middle Jurassic fluvio-deltaic coaly shales and shales within the J10-J20 supersequences (Plover Formation), Middle-Late Jurassic to Early Cretaceous sub-oxic marine shales within the J30-K10 supersequences (Vulcan and Montara formations) and K20-K30 supersequences (Echuca Shoals Formation). All of these source rocks contain significant contributions of land-plant derived organic matter and within the Caswell Sub-basin have reached sufficient maturities to have transformed most of the kerogen into hydrocarbons, with the majority of expulsion occurring from the Late Cretaceous until present.

  • The Browse Basin hosts considerable gas and condensate resources, including the Ichthys and Prelude fields that are being developed for liquefied natural gas (LNG) production. Oil discoveries are sub-economic. This multi-disciplinary study integrating sequence stratigraphy, palaeogeography and geochemical data has mapped the spatial and temporal distribution of Jurassic to earliest Cretaceous source rocks. This study allows a better understanding of the source rocks contribution to the known hydrocarbon accumulations and charge history in the basin, including in underexplored areas. The Jurassic to earliest Cretaceous source rocks have been identified as being the primary sources of the gases and condensates recovered from accumulations in the Browse Basin as follows: - The Lower–Middle Jurassic J10–J20 (Plover Formation) organic-rich source rocks have been deposited along the northeast-southwest trending fluvial-deltaic system associated with a phase of pre-breakup extension. They have charged gas reservoired within J10–J20 accumulations on the Scott Reef Trend and in the central Caswell Sub-basin at Ichthys/Prelude, and in the Lower Cretaceous K40 supersequence on the Yampi Shelf. - Late Jurassic–earliest Cretaceous J30–K10 source rocks are interpreted to have been deposited in a rift, north of the Scott Reef Trend and along the Heywood Fault System (e.g. Callovian–Tithonian J30–J50 supersequences, lower Vulcan Formation). The J30–K10 shales are believed to have sourced wet gas reservoired in the K10 sandstone (Brewster Member) in the Ichthys/Prelude and Burnside accumulations, and potentially similar plays in the southern Caswell Sub-basin. - The organic-rich source rocks observed in the Heywood Graben may be associated with deeper water marine shales with higher plant input into the isolated inboard rift. They are the potential source of fluids reservoired within the Crux accumulation, which has a geochemical composition more closely resembling a petroleum system in the southern Bonaparte Basin.

  • Petroleum geochemical datasets and information are essential to government for evidence-based decision making on natural resources, and to the petroleum industry for de-risking exploration. Geoscience Australia’s newly built Data Discovery Portal (https://portal.ga.gov.au/) enables digital discoverability and accessibility to key petroleum geochemical datasets. The portal’s web map services and web feature services allow download and visualisation of geochemical data for source rocks and petroleum fluids, and deliver a petroleum systems framework for northern Australian basins. The Petroleum Source Rock Analytics Tool enables interrogation of source rock data within boreholes and field sites, and facilitates correlation of these elements of the petroleum system within and between basins. The Petroleum Systems Summary Assessment Tool assists the user to search and query components of the petroleum system(s) identified within a basin. The portal functionality includes customised data searches, and visualisation of data via interactive maps, graphs and geoscientific tools. Integration of the petroleum systems framework with the supporting geochemical data enables the Data Discovery Portal to unlock the value of these datasets by affording the user a one-stop access to interrogate the data. This allows greater efficiency and performance in evaluating the petroleum prospectivity of Australia’s sedimentary basins, facilitating and accelerating decision making around exploration investment to ensure Australia’s future resource wealth <b>Citation:</b> Edwards, D.S., MacFarlane, S.K., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S., Ray, J. and Raymond, O., 2020. Australian source rocks, fluids and petroleum systems – a new integrated geoscience data discovery portal for maximising data potential. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Source Rock and Fluids Atlas delivery and publication services provide up-to-date information on petroleum (organic) geochemical and geological data from Geoscience Australia's Organic Geochemistry Database (ORGCHEM). The sample data provides the spatial distribution of petroleum source rocks and their derived fluids (natural gas and crude oil) from boreholes and field sites in onshore and offshore Australian basins. The services provide characterisation of source rocks through the visualisation of Pyrolysis, Organic Petrology (Maceral Groups, Maceral Reflectance) and Organoclast Maturity data. The services also provide molecular and isotopic characterisation of source rocks and petroleum through the visualisation of Bulk, Whole Oil GC, Gas, Compound-Specific Isotopic Analyses (CSIA) and Gas Chromatography-Mass Spectrometry (GCMS) data tables. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids that comprise two key elements of petroleum systems analysis. The composition of petroleum determines whether or not it can be an economic commodity and if other processes (e.g. CO2 removal and sequestration; cryogenic liquefaction of LNG) are required for development.