From 1 - 10 / 29
  • The first large-scale projects for geological storage of carbon dioxide on the Australian mainland are likely to occur within sedimentary sequences that underlie or are within the Triassic-Cretaceous, Great Artesian Basin (GAB) aquifer sequence. Recent national1 and state2 assessments have concluded that certain deep formations within the GAB show considerable geological suitability for the storage of greenhouse gases. These same formations contain trapped methane and naturally generated CO2 stored for millions of years. In July 2010, the Queensland government released exploration permits for Greenhouse Gas Storage in the Surat and Galilee basins.An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact CO2 migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of CO2 migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of CO2, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are few hydrogeochemical studies of these deeper aquifers in the prospective storage areas. Historical hydrogeochemical data are compiled from various State and Federal Government agencies. In addition, hydrogeochemical information is compiled from thousands of petroleum well completion reports in order to obtain more information on the deeper aquifers, not typically used for agriculture or human consumption. The data are passed through a QC procedure to check for mud contamination and to ascertain whether a representative sample had been collected. The large majority of the samples proved to be contaminated but a small selection passed the QC criteria. The full dataset is available for download from GA's Virtual Dataroom. Oral presentation at "Groundwater 2010" Conference, 31 October - 4 November 2010, Canberra

  • Australia has been making major progress towards early deployment of carbon capture and storage from natural gas processing and power generation sources. This paper will review, from the perspective of a government agency, the current state of various Australian initiatives and the advances in technical knowledge up until the 2010 GHGT conference. In November 2008, the Offshore Petroleum and Greenhouse Gas Storage Bill 2006 was passed by the Australian Parliament and established a legal framework to allow interested parties to explore for and evaluate storage potential in offshore sedimentary basins that lie in Australian Commonwealth waters. As a result of this Act, Australia became the first country in the world, in March 2009, to open exploration acreage for storage of greenhouse gases under a system that closely mirrors the well-established Offshore Petroleum Acreage Release. The ten offshore areas offered for geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances. The co-incidence of the 2009 Global Financial Crisis may have reduced the number of prospective CCS projects that were reported to be in the 'pipe-line' and the paper examines the implications of this apparent outcome. The Carbon Storage Taskforce has brought together both Australian governments technical experts to build a detailed assessment of the perceived storage potential of Australia's sedimentary basins. This evaluation has been based on existing data, both on and offshore. A pre-competitive exploration programme has also been compiled to address the identified data gaps and to acquire, with state funding, critical geological data which will be made freely available to encourage industrial participation in the search for commercial storage sites.

  • Having techniques available for the accurate quantification of potential CO2 surface leaks from geological storage sites is critical for regulators, public assurance and for underpinning carbon pricing mechanisms. Currently, there are few options available that enable accurate CO2 quantification of potential leaks at the soil-atmosphere interface. Integrated soil flux measurements can be used to quantify CO2 emission rates from the soil and atmospheric techniques such as eddy covariance or Lagrangian stochastic modelling have been used with some success to quantify CO2 emissions into the atmosphere from simulated surface leaks. The error for all of these techniques for determining the emission rate is not less than 10%. A new technique to quantify CO2 emissions was trialled at the CO2CRC Ginninderra controlled release site in Canberra. The technique, termed atmospheric tomography, used an array of sampling sites and a Bayesian inversion technique to simultaneously solve for the location and magnitude of a simulated CO2 leak. The technique requires knowledge of concentration enhancement downwind of the source and the normalized, three-dimensional distribution (shape) of concentration in the dispersion plume. Continuous measurements of turbulent wind and temperature statistics were used to model the dispersion plume.

  • Australia has embarked on a process of potential commitment through the Kyoto Protocol to contain growth in greenhouse gas emissions to 8% between 1990 and the reporting period of 2008 - 2012. The target is well below the estimated growth of about 28% under the `business as usual' condition. Australia's greenhouse gas inventory estimates that 502 million tonnes of carbon dioxide equivalents were emitted in the base year of 1990. This report examines over 175 candidate options for reducing greenhouse gas emissions to identify their technical feasibility, cost per tonne of carbon dioxide avoided and capability to reduce emissions under Australian conditions. The candidate options were not intended to represent an exhaustive list but they encompass major and some lesser options being canvassed in Australia and overseas. Preferred options were selected on their performance towards the criteria of technical feasibility, cost and capability.

  • Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release reference facility to simulate surface emissions of CO2 (and other GHG gases) from an underground slotted horizontal well into the atmosphere under controlled conditions. The facility is located in a paddock maintained by CSIRO Plant and Industry at Ginninderra, ACT. The design of the facility is modelled on the ZERT controlled release facility in Montana, which conducts experiments to develop capabilities and test techniques for detecting and monitoring CO2 leakage. The first phase of the installation is complete and has supported an above ground, point source, release experiment, utilising a liquid CO2 storage vessel (2.5 tonnes) with a vaporiser, mass flow controller unit with a capacity for 6 individual metered gas outlet streams, equipment shed and a gas cylinder cage. Phase 2 involved the installation of a shallow (2m depth) underground 120m horizontally drilled slotted well, in June 2011, intended to model a line source of CO2 leakage from a storage site. This presentation will detail the various activities involved in designing and installing the horizontal well, and designing a packer system to partition the well into six CO2 injection chambers. A trenchless drilling technique used for installing the slotted HDPE pipe into the bore hole will be described. The choice of well orientation based upon the effects of various factors such as topography, wind direction and ground water depth, will be discussed. It is envisaged that the facility will be ready for conducting sub-surface controlled release experiments during spring 2011.

  • In July 2010 Geoscience Australia and CSIRO Marine & Atmospheric Research jointly commissioned a new atmospheric composition monitoring station (' Arcturus') in central Queensland. The facility is designed as a proto-type remotely operated `baseline monitoring station' such as could be deployed in areas that are likely targets for commercial scale carbon capture and geological storage (CCS). It is envisaged that such a station could act as a high quality reference point for later in-fill, site based, atmospheric monitoring associated with geological storage of CO2. The station uses two wavelength scanned cavity ringdown instruments to measure concentrations of carbon dioxide (CO2), methane (CH4), water vapour and the isotopic signature (?13C) of CO2. Meteorological parameters such as wind speed and wind direction are also measured. In combination with CSIRO's TAPM (The Air Pollution Model), data will be used to understand the local variations in CO2 and CH4 and the contributions of natural and anthropogenic sources in the area to this variability. The site is located in a region that supports cropping, grazing, cattle feedlotting, coal mining and gas production activities, which may be associated with fluxes of CO2 and CH4. We present in this paper some of the challenges found during the installation and operation of the station in a remote, sub-tropical environment and how these were resolved. We will also present the first results from the site coupled with preliminary modelling of the relative contribution of large point source anthropogenic emissions and their contribution to the background.

  • Approximately one quarter of Australia's CO2 emissions come from southeast and central Queensland. This poster presents the geoscientific interpretations which lead to constructing a simplified 3-D model of a potential geological storage site for CO2. The Bowen Basin is located in northeast Australia, approximately 200 to 500 km from major CO2 emission hubs in southeast Queensland. The resources of the Bowen Basin include coal, oil and gas, and there are water resources within the overlying Great Artesian Basin. Defining trap integrity within the Bowen Basin is important to ensure that none of these resources are compromised. The Wunger Ridge area has been the focus of petroleum exploration for hydrocarbons. Geological, geophysical, hydrodynamic, petrological, petrophysical and seal capacity interpretations of datasets from the area were undertaken. These interpretations indicate that the Triassic fluvial - deltaic Showgrounds Sandstone is the most suitable for CO2 storage and injection as it is permeable and saturated with brackish to saline water except where hydrocarbons have accumulated. Geological profiles were developed using sequence stratigraphic concepts and combined with rock properties, measured from core, to produce simplified 3-D models with the goal of assessing parameters for CO2 injection and migration. Simulation runs using simple models, based on a coarse-scale grid, suggest that either one horizontal or two vertical wells are required to inject at the proposed rate. Geological heterogeneity increases injection pressure around the wellbore and reduces injection rates compared to homogeneous models, resulting in the need for more injection wells.

  • No abstract available

  • Many industries and researchers have been examining ways of substantially reducing greenhouse gas emissions. No single method is likely to be a panacea, however some options do show considerable promise. Geological sequestration is one option that utilises mature technology and has the potential to sequester large volumes of CO2. In Australia geological sequestration has been the subject of research for the last 2? years within the Australian Petroleum Cooperative Research Centre's GEODISC program. A portfolio of potential geological sequestration sites (?sinks?) has been identified across all sedimentary basins in Australia, and these have been compared with nearby known or potential CO2 emission sources. These sources have been identified by incorporating detailed analysis of the national greenhouse gas emission databases with other publicly available data, a process that resulted in recognition of eight regional emission nodes. An earlier generic economic model for geological sequestration in Australia has been updated to accommodate the changes arising from this process of ?source to sink? matching. Preliminary findings have established the relative attractiveness of potential injection sites through a ranking approach. It includes the ability to accommodate the volumes of sequesterable greenhouse gas emissions predicted for the adjacent region, the costs involved in transport, sequestration and ongoing operations, and a variety of technical geological risks. Some nodes with high volumes of emissions and low sequestration costs clearly appear to be suitable, whilst others with technical and economic issues appear to be problematic. This assessment may require further refinement once findings are completed from the GEODISC site-specific research currently underway.

  • Deployment of Unmanned Aerial Vehicle during surface CO2 release experiments at the Ginninderra greenhouse gas controlled release facility H. Berko (CO2CRC, Geoscience Australia), F. Poppa (The Australian National University), U. Zimmer (The Australian National University) and A. Feitz (CO2CRC, Geoscience Australia) Lagrangian stochastic (LS) forward modelling of CO2 plumes from above-surface release experiments conducted at the GA-CO2CRC Ginninderra controlled release facility demonstrated that small surface leaks are likely to disperse rapidly and unlikely to be detected at heights greater 4 m; this was verified using a rotorcraft to map out the plume. The CO2 sensing rotorcraft unmanned aerial vehicle (RUAV) developed at the Australian National University, Canberra, is equipped with a CO2 sensor, a GPS, lidar and a communication module. It was developed to detect and locate CO2 gas leaks; and estimate CO2 concentration at the emission source. The choice of a rotor-craft UAV allows slower flight speeds compared to speeds of a fixed-wing UAV; and the electric powered motor enables flight times of 12 min. In experiments conducted at the Ginninderra controlled release facility, gaseous CO2 (100 kg per day) was released from a small diffuse source located in the middle of the paddock, and the RUAV was flown repeatedly over the CO2 source at a few meters height. Meteorological parameters measured continuously at the site at the time of the flight were input in the LS model. Mapped out horizontal and vertical CO2 concentrations established the need to be close to the ground in order to detect CO2 leakage using aerial techniques. Using the rotorcraft as a mobile sensor could be an expedient mechanism to detect plumes over large areas, and would be important for early detection of CO2 leaks arising from CCS activities.